Walks in the Quarter Plane with Multiple Steps

We extend the classification of nearest neighbour walks in the quarter plane to models in which multiplicities are attached to each direction in the step set. Our study leads to a small number of infinite families that completely characterize all the models whose associated group is D4, D6, or D8. T...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Discrete mathematics and theoretical computer science Ročník DMTCS Proceedings, 27th...; číslo Proceedings; s. 25 - 36
Hlavní autori: Kauers, Manuel, Yatchak, Rika
Médium: Journal Article Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: DMTCS 01.01.2015
Discrete Mathematics & Theoretical Computer Science
Edícia:DMTCS Proceedings
Predmet:
ISSN:1365-8050, 1462-7264, 1365-8050
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We extend the classification of nearest neighbour walks in the quarter plane to models in which multiplicities are attached to each direction in the step set. Our study leads to a small number of infinite families that completely characterize all the models whose associated group is D4, D6, or D8. These families cover all the models with multiplicites 0, 1, 2, or 3, which were experimentally found to be D-finite — with three noteworthy exceptions. Nous étendons la classification des marches aux plus proches voisins dans le quart de plan à des modèles dans lesquels une multiplicité est attachée à chaque direction de l’ensemble des pas. Notre étude identifie un petit nombre de familles infinies qui caractérisent complétement tous les modèles dont le groupe est D4, D6 ou D8. Ces familles contiennent tous les modèles à multiplicités 0, 1, 2 ou 3 dont il a été prouvé expérimentalement qu’ils étaientD-finis —avec trois exceptions notables.
ISSN:1365-8050
1462-7264
1365-8050
DOI:10.46298/dmtcs.2463