A quasi-quadratic vertex-kernel for Cograph Edge Editing
We provide a O(k2logk) vertex kernel for cograph edge editing. This improves a cubic kernel found by Guillemot, Havet, Paul and Perez (Guillemot et al., 2010) which involved four reduction rules. We generalize one of their rules, based on packing of induced paths of length four, by introducing t-mod...
Uložené v:
| Vydané v: | Discrete Applied Mathematics Ročník 357; s. 282 - 296 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
15.11.2024
Elsevier |
| Predmet: | |
| ISSN: | 0166-218X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We provide a O(k2logk) vertex kernel for cograph edge editing. This improves a cubic kernel found by Guillemot, Havet, Paul and Perez (Guillemot et al., 2010) which involved four reduction rules. We generalize one of their rules, based on packing of induced paths of length four, by introducing t-modules, which are modules up to t edge modifications. The key fact is that large t-modules cannot be edited more than t times, and this allows to obtain a near quadratic kernel. The extra logk factor seems tricky to remove as it is necessary in the combinatorial lemma on trees which is central in our proof. Nevertheless, we think that a quadratic bound should be reachable. |
|---|---|
| ISSN: | 0166-218X |
| DOI: | 10.1016/j.dam.2024.05.014 |