RMPIA: a new algorithm for computing the Lagrange matrix interpolation polynomials
Let σ 0 , σ 1 ,⋯, σ n be a set of n + 1 distinct real numbers (i.e., σ i ≠ σ j , for i ≠ j ) and F 0 , F 1 ,⋯ , F n , be given real s × r matrices, we know that there exists a unique s × r matrix polynomial P n ( λ ) of degree n such that P n ( σ i ) = F i , for i = 0,1,⋯ , n , P n is the matrix int...
Uloženo v:
| Vydáno v: | Numerical algorithms Ročník 92; číslo 1; s. 849 - 867 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.01.2023
Springer Nature B.V Springer Verlag |
| Edice: | Numerical Methods and Scientific Computing CIRM, Luminy, France 8-12 November 2021 |
| Témata: | |
| ISSN: | 1017-1398, 1572-9265 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Let
σ
0
,
σ
1
,⋯,
σ
n
be a set of
n
+ 1 distinct real numbers (i.e.,
σ
i
≠
σ
j
, for
i
≠
j
) and
F
0
,
F
1
,⋯ ,
F
n
, be given real
s
×
r
matrices, we know that there exists a unique
s
×
r
matrix polynomial
P
n
(
λ
) of degree
n
such that
P
n
(
σ
i
) =
F
i
, for
i
= 0,1,⋯ ,
n
,
P
n
is the matrix interpolation polynomial for the set {(
σ
i
,
F
i
),
i
= 0,1,⋯ ,
n
}. The matrix polynomial
P
n
(
λ
) can be computed by using the Lagrange formula or the barycentric method. This paper presents a new method for computing matrix interpolation polynomials. We will reformulate the Lagrange matrix interpolation polynomial problem and give a new algorithm for giving the solution of this problem, the Recursive Matrix Polynomial Interpolation Algorithm (RMPIA) in full and simplified versions, and some properties of this algorithm will be studied. Cost and storage of this algorithm with the classical formulas will be studied and some examples will also be given. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1017-1398 1572-9265 |
| DOI: | 10.1007/s11075-022-01357-0 |