RMPIA: a new algorithm for computing the Lagrange matrix interpolation polynomials

Let σ 0 , σ 1 ,⋯, σ n be a set of n + 1 distinct real numbers (i.e., σ i ≠ σ j , for i ≠ j ) and F 0 , F 1 ,⋯ , F n , be given real s × r matrices, we know that there exists a unique s × r matrix polynomial P n ( λ ) of degree n such that P n ( σ i ) = F i , for i = 0,1,⋯ , n , P n is the matrix int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms Jg. 92; H. 1; S. 849 - 867
Hauptverfasser: Messaoudi, Abderrahim, Sadok, Hassane
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.01.2023
Springer Nature B.V
Springer Verlag
Schriftenreihe:Numerical Methods and Scientific Computing CIRM, Luminy, France 8-12 November 2021
Schlagworte:
ISSN:1017-1398, 1572-9265
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let σ 0 , σ 1 ,⋯, σ n be a set of n + 1 distinct real numbers (i.e., σ i ≠ σ j , for i ≠ j ) and F 0 , F 1 ,⋯ , F n , be given real s × r matrices, we know that there exists a unique s × r matrix polynomial P n ( λ ) of degree n such that P n ( σ i ) = F i , for i = 0,1,⋯ , n , P n is the matrix interpolation polynomial for the set {( σ i , F i ), i = 0,1,⋯ , n }. The matrix polynomial P n ( λ ) can be computed by using the Lagrange formula or the barycentric method. This paper presents a new method for computing matrix interpolation polynomials. We will reformulate the Lagrange matrix interpolation polynomial problem and give a new algorithm for giving the solution of this problem, the Recursive Matrix Polynomial Interpolation Algorithm (RMPIA) in full and simplified versions, and some properties of this algorithm will be studied. Cost and storage of this algorithm with the classical formulas will be studied and some examples will also be given.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-022-01357-0