Defect correction and domain decomposition for second-order boundary value problems
Highly accurate approximation is obtained through the techniques of defect correction and domain decomposition for second-order elliptic boundary value problems on a disc. The basic solution is computed using the Schwarz domain decomposition procedure and bilinear Galerkin finite element approximati...
Uloženo v:
| Vydáno v: | Journal of computational and applied mathematics Ročník 130; číslo 1; s. 41 - 51 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
01.05.2001
Elsevier |
| Témata: | |
| ISSN: | 0377-0427, 1879-1778 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Highly accurate approximation is obtained through the techniques of
defect correction and domain decomposition for second-order elliptic boundary value problems on a disc. The basic solution is computed using the Schwarz domain decomposition procedure and bilinear Galerkin finite element approximation on each subdomain to get an O(
h
2) accurate basic solution in higher-order discrete Sobolev norms. The defects are then computed using high-order polynomials (Lagrange polynomials or splines) to get as many O(
h
2) corrections as possible. |
|---|---|
| ISSN: | 0377-0427 1879-1778 |
| DOI: | 10.1016/S0377-0427(99)00392-1 |