Easily Parallelizable and Distributable Class of Algorithms for Structured Sparsity, with Optimal Acceleration

Many statistical learning problems can be posed as minimization of a sum of two convex functions, one typically a composition of nonsmooth and linear functions. Examples include regression under structured sparsity assumptions. Popular algorithms for solving such problems, for example, ADMM, often i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of computational and graphical statistics Ročník 28; číslo 4; s. 821 - 833
Hlavní autori: Ko, Seyoon, Yu, Donghyeon, Won, Joong-Ho
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Alexandria Taylor & Francis 02.10.2019
American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America
Taylor & Francis Ltd
Predmet:
ISSN:1061-8600, 1537-2715
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Buďte prvý, kto okomentuje tento záznam!
Najprv sa musíte prihlásiť.