Easily Parallelizable and Distributable Class of Algorithms for Structured Sparsity, with Optimal Acceleration
Many statistical learning problems can be posed as minimization of a sum of two convex functions, one typically a composition of nonsmooth and linear functions. Examples include regression under structured sparsity assumptions. Popular algorithms for solving such problems, for example, ADMM, often i...
Uložené v:
| Vydané v: | Journal of computational and graphical statistics Ročník 28; číslo 4; s. 821 - 833 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Alexandria
Taylor & Francis
02.10.2019
American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America Taylor & Francis Ltd |
| Predmet: | |
| ISSN: | 1061-8600, 1537-2715 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!