Dynamic normal forms and dynamic characteristic polynomial
We present the first fully dynamic algorithm for computing the characteristic polynomial of a matrix. In the generic symmetric case, our algorithm supports rank-one updates in O(n2logn) randomized time and queries in constant time, whereas in the general case the algorithm works in O(n2klogn) random...
Uloženo v:
| Vydáno v: | Theoretical computer science Ročník 412; číslo 16; s. 1470 - 1483 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.04.2011
|
| Témata: | |
| ISSN: | 0304-3975, 1879-2294 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present the first fully dynamic algorithm for computing the characteristic polynomial of a matrix. In the generic symmetric case, our algorithm supports rank-one updates in O(n2logn) randomized time and queries in constant time, whereas in the general case the algorithm works in O(n2klogn) randomized time, where k is the number of invariant factors of the matrix. The algorithm is based on the first dynamic algorithm for computing normal forms of a matrix such as the Frobenius normal form or the tridiagonal symmetric form. The algorithm can be extended to solve the matrix eigenproblem with relative error 2−b in additional O(nlog2nlogb) time. Furthermore, it can be used to dynamically maintain the singular value decomposition (SVD) of a generic matrix. Together with the algorithm, the hardness of the problem is studied. For the symmetric case, we present an Ω(n2) lower bound for rank-one updates and an Ω(n) lower bound for element updates. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0304-3975 1879-2294 |
| DOI: | 10.1016/j.tcs.2010.11.049 |