Dynamic normal forms and dynamic characteristic polynomial

We present the first fully dynamic algorithm for computing the characteristic polynomial of a matrix. In the generic symmetric case, our algorithm supports rank-one updates in O(n2logn) randomized time and queries in constant time, whereas in the general case the algorithm works in O(n2klogn) random...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Theoretical computer science Ročník 412; číslo 16; s. 1470 - 1483
Hlavní autoři: Frandsen, Gudmund Skovbjerg, Sankowski, Piotr
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.04.2011
Témata:
ISSN:0304-3975, 1879-2294
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present the first fully dynamic algorithm for computing the characteristic polynomial of a matrix. In the generic symmetric case, our algorithm supports rank-one updates in O(n2logn) randomized time and queries in constant time, whereas in the general case the algorithm works in O(n2klogn) randomized time, where k is the number of invariant factors of the matrix. The algorithm is based on the first dynamic algorithm for computing normal forms of a matrix such as the Frobenius normal form or the tridiagonal symmetric form. The algorithm can be extended to solve the matrix eigenproblem with relative error 2−b in additional O(nlog2nlogb) time. Furthermore, it can be used to dynamically maintain the singular value decomposition (SVD) of a generic matrix. Together with the algorithm, the hardness of the problem is studied. For the symmetric case, we present an Ω(n2) lower bound for rank-one updates and an Ω(n) lower bound for element updates.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2010.11.049