Dynamic normal forms and dynamic characteristic polynomial
We present the first fully dynamic algorithm for computing the characteristic polynomial of a matrix. In the generic symmetric case, our algorithm supports rank-one updates in O(n2logn) randomized time and queries in constant time, whereas in the general case the algorithm works in O(n2klogn) random...
Saved in:
| Published in: | Theoretical computer science Vol. 412; no. 16; pp. 1470 - 1483 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.04.2011
|
| Subjects: | |
| ISSN: | 0304-3975, 1879-2294 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We present the first fully dynamic algorithm for computing the characteristic polynomial of a matrix. In the generic symmetric case, our algorithm supports rank-one updates in O(n2logn) randomized time and queries in constant time, whereas in the general case the algorithm works in O(n2klogn) randomized time, where k is the number of invariant factors of the matrix. The algorithm is based on the first dynamic algorithm for computing normal forms of a matrix such as the Frobenius normal form or the tridiagonal symmetric form. The algorithm can be extended to solve the matrix eigenproblem with relative error 2−b in additional O(nlog2nlogb) time. Furthermore, it can be used to dynamically maintain the singular value decomposition (SVD) of a generic matrix. Together with the algorithm, the hardness of the problem is studied. For the symmetric case, we present an Ω(n2) lower bound for rank-one updates and an Ω(n) lower bound for element updates. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0304-3975 1879-2294 |
| DOI: | 10.1016/j.tcs.2010.11.049 |