Kernelization of matrix updates, when and how?
We define what it means for a learning algorithm to be kernelizable in the case when the instances are vectors, asymmetric matrices and symmetric matrices, respectively. We can characterize kernelizability in terms of an invariance of the algorithm to certain orthogonal transformations. If we assume...
Gespeichert in:
| Veröffentlicht in: | Theoretical computer science Jg. 558; S. 159 - 178 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
13.11.2014
|
| Schlagworte: | |
| ISSN: | 0304-3975, 1879-2294 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!