Effects of Wave–Current Interactions on Bay–Shelf Exchange

Bay–shelf exchange is critical to coastal systems because it promotes self-purification or pollution dilution of the systems. In this study, the effects of wave–current interactions on bay–shelf exchange are explored in a micromesotidal system—Daya Bay in southern China. Waves can enlarge the shear-...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical oceanography Vol. 51; no. 5; pp. 1637 - 1654
Main Authors: Song, Dehai, Wu, Wen, Li, Qiang
Format: Journal Article
Language:English
Published: 01.05.2021
ISSN:0022-3670, 1520-0485
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bay–shelf exchange is critical to coastal systems because it promotes self-purification or pollution dilution of the systems. In this study, the effects of wave–current interactions on bay–shelf exchange are explored in a micromesotidal system—Daya Bay in southern China. Waves can enlarge the shear-induced seaward transport and reduce the residual-current-induced landward transport, which benefits the bay–shelf exchange; however, tides work oppositely and slow the wave-induced bay–shelf exchange through vertical mixing and reduced shear-induced exchange. Five wave–current interactions are compared, and it is found that the depth-dependent wave radiation stress (WRS) contributes most to the bay–shelf exchange, followed by the wave dissipation as a source term in the turbulence kinetic energy equation, and the mean current advection and refraction of wave energy (CARWE). The vertical transfer of wave-generated pressure to the mean momentum equation (also known as the form drag) and the combined wave–current bottom stress (CWCBS) play minor roles in the bay–shelf exchange. The bay–shelf exchange is faster under southerly wind than under northerly wind because the bay is facing southeast; synoptic events such as storms enhance the bay–shelf exchange. The CARWE terms are dominant in both seasonal and synoptic variations of the bay–shelf exchange because they can considerably change the distribution of significant wave height. The WRS changes the bay–shelf exchange mainly through altering the flow velocity, whereas the wave dissipation on turbulence alters the vertical mixing. The form drag and the CWCBS have little impact on the bay–shelf exchange or its seasonal and synoptic variations.
ISSN:0022-3670
1520-0485
DOI:10.1175/JPO-D-20-0222.1