Parametric FIR filtering for G-code interpolation with corner smoothing and zero circular contour error for NC systems
Motion planning is an important topic in numerical control systems. It has two main schemes: acceleration/deceleration (acc/dec) before interpolation (ADBI) and acc/dec after interpolation (ADAI). An ADBI can interpolate command without contour error, but it causes a velocity discontinuity problem w...
Saved in:
| Published in: | International journal of advanced manufacturing technology Vol. 125; no. 9-10; pp. 4379 - 4397 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Springer London
01.04.2023
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0268-3768, 1433-3015 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Motion planning is an important topic in numerical control systems. It has two main schemes: acceleration/deceleration (acc/dec) before interpolation (ADBI) and acc/dec after interpolation (ADAI). An ADBI can interpolate command without contour error, but it causes a velocity discontinuity problem when passing through a corner. Meanwhile, an ADAI can generate a smooth cornering profile without discontinuous velocity, but it has contour error along circular trajectories. To have the benefits of both schemes and avoid their disadvantages, this study proposes a new scheme for G-code motion planning: parametric acc/dec interpolation (PADI). The PADI is a new scheme different from the ADAI and ADBI schemes. The PADI first plans a motion profile in a parametric space like an ADAI and then interpolates the blended parametric command in the working space like an ADBI. Through this approach, it can generate a smooth cornering profile like an ADAI and interpolate a circular command with zero contour error like an ADBI. These advantages can be observed in simulations and experiments. The proposed PADI scheme provides a brand-new motion planning strategy with multiple advantages that traditional methods cannot simultaneously achieve. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0268-3768 1433-3015 |
| DOI: | 10.1007/s00170-023-11005-z |