Study of bioconvective couple-stress nanofluid flow subject to stratified conditions by using numerical and Levenberg Marquardt back-propagation algorithms

The heterogeneous fluid model is expressed for the nanofluid flow to study the consequence of Fourier's and Fick's laws. The magnetohydrodynamics couple-stress bioconvective nanofluid flow is considered across an extending surface with the impact of heat source/sink and stratified boundary...

Full description

Saved in:
Bibliographic Details
Published in:International communications in heat and mass transfer Vol. 164; p. 108947
Main Authors: Yuan, Shuai, Cheng, Dapeng
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.05.2025
Subjects:
ISSN:0735-1933
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The heterogeneous fluid model is expressed for the nanofluid flow to study the consequence of Fourier's and Fick's laws. The magnetohydrodynamics couple-stress bioconvective nanofluid flow is considered across an extending surface with the impact of heat source/sink and stratified boundary conditions. The solid nano particulates and concentrations of motile microorganisms are added to the nonlinear system of differential equations conveying the non-Newtonian nanoliquid flow model. The similarity transformations are employed to transfigure the system of partial differential equations into the lowest order of ordinary differential equations. The artificial neural network (ANN) based on the LMBP (Levenberg Marquardt Back-propagation) algorithm is employed to solve these equations. The dataset is formed using the MATLAB package bvp4c. The dataset is created for diverse circumstances of flow factors, as well as validation and testing of the ANN. The accuracy of the problem is assessed through numerous statistical results (histogram, curve fitting, regression measures, and performance plots). The relative percent error between present outcomes and published studies is 0.00486 % at Pr = 2.0 (Prandtl number), where it gradually decreases up to 0.00069 % at Pr = 7.0. The outcomes are presented through the table and figures. It has been noticed that the Couple-stress nanofluid (CSNF) flow drops with the effect of the magnetic field. The CSNF temperature augments with the improvement of the thermophoresis effect, buoyancy ratio factor, Rayleigh number, and thermal radiation. Moreover, the concentration curve lessens under the impact of the Lewis number while enriched with the outcome of the concentration stratification parameter. The absolute error of reference and targeted date is attained within 10−3–10−6 which proves the exceptional precision of the results. •Numerical study of bioconvective couple-stress nanofluid under stratification.•Effects of heat source/sink, thermophoresis, and radiation are investigated.•Governing equations solved using ANN with the Levenberg-Marquardt algorithm.•MATLAB's bvp4c solver generates high-accuracy dataset for ANN validation.•Magnetic field reduces flow, while thermophoresis and radiation enhance heat transfer.
AbstractList The heterogeneous fluid model is expressed for the nanofluid flow to study the consequence of Fourier's and Fick's laws. The magnetohydrodynamics couple-stress bioconvective nanofluid flow is considered across an extending surface with the impact of heat source/sink and stratified boundary conditions. The solid nano particulates and concentrations of motile microorganisms are added to the nonlinear system of differential equations conveying the non-Newtonian nanoliquid flow model. The similarity transformations are employed to transfigure the system of partial differential equations into the lowest order of ordinary differential equations. The artificial neural network (ANN) based on the LMBP (Levenberg Marquardt Back-propagation) algorithm is employed to solve these equations. The dataset is formed using the MATLAB package bvp4c. The dataset is created for diverse circumstances of flow factors, as well as validation and testing of the ANN. The accuracy of the problem is assessed through numerous statistical results (histogram, curve fitting, regression measures, and performance plots). The relative percent error between present outcomes and published studies is 0.00486 % at Pr = 2.0 (Prandtl number), where it gradually decreases up to 0.00069 % at Pr = 7.0. The outcomes are presented through the table and figures. It has been noticed that the Couple-stress nanofluid (CSNF) flow drops with the effect of the magnetic field. The CSNF temperature augments with the improvement of the thermophoresis effect, buoyancy ratio factor, Rayleigh number, and thermal radiation. Moreover, the concentration curve lessens under the impact of the Lewis number while enriched with the outcome of the concentration stratification parameter. The absolute error of reference and targeted date is attained within 10−3–10−6 which proves the exceptional precision of the results. •Numerical study of bioconvective couple-stress nanofluid under stratification.•Effects of heat source/sink, thermophoresis, and radiation are investigated.•Governing equations solved using ANN with the Levenberg-Marquardt algorithm.•MATLAB's bvp4c solver generates high-accuracy dataset for ANN validation.•Magnetic field reduces flow, while thermophoresis and radiation enhance heat transfer.
ArticleNumber 108947
Author Yuan, Shuai
Cheng, Dapeng
Author_xml – sequence: 1
  givenname: Shuai
  surname: Yuan
  fullname: Yuan, Shuai
  organization: Educational Technology Information Center, Shandong College of Traditional Chinese Medicine, Yantai 264199, China
– sequence: 2
  givenname: Dapeng
  surname: Cheng
  fullname: Cheng, Dapeng
  email: dapengchengcn@163.com
  organization: School of Computer Science and Technology, Shandong Technology and Business University, Yantai 264005, China
BookMark eNqNkD1PwzAQhj0UiRb4Dx5ZUuwkTpoNVPGpIgZgji72OXVJ7WI7Qf0t_FlSlY2F6Yb33udOz4xMrLNIyCVnc854cbWZG7lGiFsIIXqwQaOfpywVY7yo8nJCpqzMRMKrLDslsxA2jDG-4Isp-X6NvdpTp2ljnHR2QBnNgFS6ftdhMuIwBGrBOt31RlHduS8a-mYz7tHo6OFeNNqgGitWmWicDbTZ0z4Y21Lbb9EbCR0Fq-gKB7QN-pY-g__swatIG5Afyc67HbRwKFPoWudNXG_DOTnR0AW8-J1n5P3u9m35kKxe7h-XN6tEpgseE8yVwKpIBRN5jqLAhkNVYAqqBK4KVKUUkEIulM54JjMGTIg0S6VGledVkZ2R6yNXeheCR13vvNmC39ec1QfB9ab-K7g-CK6PgkfE0xGB45-DGdMgDVqJyvjRVK2c-T_sB-edmsc
Cites_doi 10.1016/j.icheatmasstransfer.2009.01.003
10.18280/ijht.390122
10.1016/j.icheatmasstransfer.2020.104655
10.1016/j.triboint.2023.109038
10.1016/j.triboint.2024.110182
10.1016/j.heliyon.2024.e36169
10.1016/j.icheatmasstransfer.2024.108195
10.3390/sym12030393
10.1080/02286203.2022.2084007
10.1371/journal.pone.0145332
10.1016/j.rineng.2023.101536
10.1039/D3NA00503H
10.1016/j.aej.2021.06.047
10.1016/j.ijthermalsci.2025.109765
10.1063/5.0200401
10.1038/s41598-023-49481-8
10.1515/jnet-2020-0092
10.1038/s41598-023-29702-w
10.1016/j.icheatmasstransfer.2023.106956
10.1038/s41598-023-27562-y
10.1007/s13369-022-06945-9
10.1016/j.ijheatfluidflow.2024.109360
10.1002/htj.22730
10.1002/anie.196904381
10.1016/j.icheatmasstransfer.2024.107564
10.1016/j.icheatmasstransfer.2024.107314
10.1016/j.aej.2022.02.013
10.1007/s10973-023-12699-9
10.1016/j.ijhydene.2024.12.422
10.1038/s41598-024-84480-3
10.1007/s12043-023-02702-1
10.1063/5.0082942
10.1016/j.rineng.2023.100905
10.1142/S0217984924500039
10.1016/j.csite.2021.101412
10.1142/S0217979225500444
10.1016/0376-7388(94)00230-V
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.icheatmasstransfer.2025.108947
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
ExternalDocumentID 10_1016_j_icheatmasstransfer_2025_108947
S0735193325003732
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABEFU
ABFNM
ABJNI
ABMAC
ABNUV
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SST
SSZ
T5K
WUQ
XPP
~G-
~HD
9DU
AAYXX
CITATION
ID FETCH-LOGICAL-c281t-e4d5e96250544e56eb1a96e2ad7a1d6ed7c5a2a45df313c30a055232cfed44963
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001469454300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0735-1933
IngestDate Sat Nov 29 07:28:36 EST 2025
Sun Oct 19 01:43:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords ANN
Bioconvection
Cattaneo-Christov heat flux
Couple-stress nanofluid
Modified mass flux
Exponential heat source/sink
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-e4d5e96250544e56eb1a96e2ad7a1d6ed7c5a2a45df313c30a055232cfed44963
ParticipantIDs crossref_primary_10_1016_j_icheatmasstransfer_2025_108947
elsevier_sciencedirect_doi_10_1016_j_icheatmasstransfer_2025_108947
PublicationCentury 2000
PublicationDate May 2025
2025-05-00
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May 2025
PublicationDecade 2020
PublicationTitle International communications in heat and mass transfer
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gul, Saeed (bb0035) 2022
Shafiq, Çolak, Sindhu (bb0105) 2023; 48
Ali, Jubair, Aluraikan, Abd El-Rahman, Eldin, Khalifa (bb0190) 2023; 20
Bilal, Farooq, Benghanem, Ahmad (bb0085) 2025; 212
Eladeb, Sambas, Bilal, Alshammari, Kolsi (bb0175) 2025; 18
Rehman, Chen, Hamid, Qi (bb0040) 2023; 830
Sarfraz, Khan (bb0070) 2024; 38
Rehman, Chen, Hamid, Alsallami, Al-Zubaidi, Saleem (bb0075) 2023; 190
Bilal, Maiz, Farooq, Ahmad, Nasrat, Ghazwani (bb0130) 2025; 15
Alabdan, Khan, Al-Qawasmi, Vakkar, Tlili (bb0030) 2021; 28
Mandal, Biswas, Manna, Gayen, Gorla, Chamkha (bb0100) 2022; 34
Ullah, Ali, Nawab, Abdussatar, Muhammad, Nisar (bb0145) 2022; 47
Sarfraz, Muhammad, Alrihieli, Abdelmohimen (bb0165) 2025; 105
Sarfraz, Khan (bb0170) 2024; 31
Xin, Ganie, Alwuthaynani, Bonyah, El-Wahed Khalifa, Fathima, Bilal (bb0065) 2024; 14
Alharbi, Alhawiti, Usman, Ullah, Alam, Bilal (bb0160) 2024; 107
Sarfraz, Khan (bb0220) 2024; 155
Rehman, Chen, Hamid (bb0060) 2025; 100
Bilal, Saeed, Gul, Rehman, Khan (bb0055) 2021; 4
Ur Rehman, Chen, Hamid (bb0215) 2023; 148
Hardesty (bb0080) 2017; 14
Ram, Ashok, Salawu, Shamshuddin (bb0225) 2023; 43
Jagadeesh, Reddy (bb0045) 2023; 52
Tarakaramu, Satya Narayana, Babu, Sarojamma, Makinde (bb0020) 2021; 39
Fick (bb0240) 1995; 100
Mahesh, Mahabaleshwar, Kumar, Öztop, Abu-Hamdeh (bb0050) 2023; 17
Sarfraz, Khan (bb0195) 2024; 10
Fourier (bb0245) 1822
Asjad, Zahid, Inc, Baleanu, Almohsen (bb0140) 2022; 61
Alqahtani, Bilal, Ali, Khalifa, Alqahtani (bb0155) 2023; 104
Rehman, Chen, Khan, Hamid, Masmoudi (bb0115) 2024; 200
Sithole, Mondal, Goqo, Sibanda, Motsa (bb0230) 2018; 339
Menzinger, Wolfgang (bb0135) 1969; 8
Ur Rehman, Chen, Duraihem, Hussien, Hamid, Qi (bb0205) 2024
Hayat, Aziz, Muhammad, Ahmad (bb0005) 2015; 10
Li, Raghunath, Alfaleh, Ali, Zaib, Khan, Puneeth (bb0150) 2023; 13
Nisar, Hayat, Alsaedi, Ahmad (bb0180) 2020; 116
Bilal, Waqas, Shafi, Eldin, Alaoui (bb0185) 2023; 13
Gholami, Bonakdari, Akhtari, Ebtehaj (bb0090) 2019; 26
Adnan, Alqahtani, Mahmood, Ould Beinane, Bilal (bb0110) 2024; 39
Bilal, Abouel Nasr, Rahman, Waqas (bb0015) 2024
Gul, Rehman, Saeed, Khan, Khan, Nasir, Bariq (bb0025) 2021; 2021
Waqas, Almutiri, Yagoob, Ahmad, Bilal (bb0210) 2024; 98
Sarfraz, Yasir, Khan (bb0200) 2023; 5
Shilpa, Leela (bb0125) 2023; 147
Cheng (bb0010) 2009; 36
Li, Waqas, Imran, Farooq, Mallawi, Tlili (bb0255) 2020; 12
Alsedias, Aly (bb0095) 2024; 152
Algehyne, Saeed, Arif, Bilal, Kumam, Galal (bb0250) 2023; 13
Ahmmed, Ali, Reza-E-Rabbi (bb0260) 2024; 11
Khan, Ghodhbani, Taha, Al-Yarimi, Zeeshan, Ijaz, Khedher (bb0120) 2024; 159
Waqas, Wakif, Al-Mdallal, Zaydan, Farooq, Hussain (bb0235) 2022; 61
Ali (10.1016/j.icheatmasstransfer.2025.108947_bb0190) 2023; 20
Tarakaramu (10.1016/j.icheatmasstransfer.2025.108947_bb0020) 2021; 39
Waqas (10.1016/j.icheatmasstransfer.2025.108947_bb0235) 2022; 61
Nisar (10.1016/j.icheatmasstransfer.2025.108947_bb0180) 2020; 116
Sarfraz (10.1016/j.icheatmasstransfer.2025.108947_bb0170) 2024; 31
Rehman (10.1016/j.icheatmasstransfer.2025.108947_bb0115) 2024; 200
Ur Rehman (10.1016/j.icheatmasstransfer.2025.108947_bb0215) 2023; 148
Xin (10.1016/j.icheatmasstransfer.2025.108947_bb0065) 2024; 14
Alharbi (10.1016/j.icheatmasstransfer.2025.108947_bb0160) 2024; 107
Gholami (10.1016/j.icheatmasstransfer.2025.108947_bb0090) 2019; 26
Sarfraz (10.1016/j.icheatmasstransfer.2025.108947_bb0070) 2024; 38
Algehyne (10.1016/j.icheatmasstransfer.2025.108947_bb0250) 2023; 13
Bilal (10.1016/j.icheatmasstransfer.2025.108947_bb0055) 2021; 4
Sarfraz (10.1016/j.icheatmasstransfer.2025.108947_bb0220) 2024; 155
Menzinger (10.1016/j.icheatmasstransfer.2025.108947_bb0135) 1969; 8
Waqas (10.1016/j.icheatmasstransfer.2025.108947_bb0210) 2024; 98
Gul (10.1016/j.icheatmasstransfer.2025.108947_bb0025) 2021; 2021
Shilpa (10.1016/j.icheatmasstransfer.2025.108947_bb0125) 2023; 147
Cheng (10.1016/j.icheatmasstransfer.2025.108947_bb0010) 2009; 36
Mandal (10.1016/j.icheatmasstransfer.2025.108947_bb0100) 2022; 34
Asjad (10.1016/j.icheatmasstransfer.2025.108947_bb0140) 2022; 61
Ullah (10.1016/j.icheatmasstransfer.2025.108947_bb0145) 2022; 47
Mahesh (10.1016/j.icheatmasstransfer.2025.108947_bb0050) 2023; 17
Shafiq (10.1016/j.icheatmasstransfer.2025.108947_bb0105) 2023; 48
Gul (10.1016/j.icheatmasstransfer.2025.108947_bb0035) 2022
Sarfraz (10.1016/j.icheatmasstransfer.2025.108947_bb0195) 2024; 10
Rehman (10.1016/j.icheatmasstransfer.2025.108947_bb0060) 2025; 100
Fick (10.1016/j.icheatmasstransfer.2025.108947_bb0240) 1995; 100
Li (10.1016/j.icheatmasstransfer.2025.108947_bb0150) 2023; 13
Sarfraz (10.1016/j.icheatmasstransfer.2025.108947_bb0200) 2023; 5
Alabdan (10.1016/j.icheatmasstransfer.2025.108947_bb0030) 2021; 28
Rehman (10.1016/j.icheatmasstransfer.2025.108947_bb0040) 2023; 830
Bilal (10.1016/j.icheatmasstransfer.2025.108947_bb0130) 2025; 15
Hayat (10.1016/j.icheatmasstransfer.2025.108947_bb0005) 2015; 10
Alsedias (10.1016/j.icheatmasstransfer.2025.108947_bb0095) 2024; 152
Li (10.1016/j.icheatmasstransfer.2025.108947_bb0255) 2020; 12
Eladeb (10.1016/j.icheatmasstransfer.2025.108947_bb0175) 2025; 18
Ur Rehman (10.1016/j.icheatmasstransfer.2025.108947_bb0205) 2024
Adnan (10.1016/j.icheatmasstransfer.2025.108947_bb0110) 2024; 39
Sarfraz (10.1016/j.icheatmasstransfer.2025.108947_bb0165) 2025; 105
Bilal (10.1016/j.icheatmasstransfer.2025.108947_bb0185) 2023; 13
Ram (10.1016/j.icheatmasstransfer.2025.108947_bb0225) 2023; 43
Alqahtani (10.1016/j.icheatmasstransfer.2025.108947_bb0155) 2023; 104
Khan (10.1016/j.icheatmasstransfer.2025.108947_bb0120) 2024; 159
Rehman (10.1016/j.icheatmasstransfer.2025.108947_bb0075) 2023; 190
Ahmmed (10.1016/j.icheatmasstransfer.2025.108947_bb0260) 2024; 11
Hardesty (10.1016/j.icheatmasstransfer.2025.108947_bb0080) 2017; 14
Bilal (10.1016/j.icheatmasstransfer.2025.108947_bb0015) 2024
Bilal (10.1016/j.icheatmasstransfer.2025.108947_bb0085) 2025; 212
Jagadeesh (10.1016/j.icheatmasstransfer.2025.108947_bb0045) 2023; 52
Sithole (10.1016/j.icheatmasstransfer.2025.108947_bb0230) 2018; 339
Fourier (10.1016/j.icheatmasstransfer.2025.108947_bb0245) 1822
References_xml – volume: 26
  start-page: 726
  year: 2019
  end-page: 741
  ident: bb0090
  article-title: A combination of computational fluid dynamics, artificial neural network, and support vectors machines models to predict flow variables in curved channel
  publication-title: Scientia Iranica
– volume: 10
  year: 2024
  ident: bb0195
  article-title: Influence of engine oil-infused multi-walled carbon nanotubes and titania nanoparticles on a vertically inclined porous surface
  publication-title: Heliyon
– volume: 200
  year: 2024
  ident: bb0115
  article-title: Modeling and predicting heat transfer performance in bioconvection flow around a circular cylinder using an artificial neural network approach
  publication-title: Tribol. Int.
– year: 1822
  ident: bb0245
  article-title: Th’eorie Analytique de la Chaleur
– volume: 38
  year: 2024
  ident: bb0070
  article-title: Rheology of gyrotactic microorganisms in Jeffrey fluid flow: a stability analysis
  publication-title: Mod. Phys. Lett. B
– start-page: 1
  year: 2024
  end-page: 19
  ident: bb0205
  article-title: Darcy-Forchheimer aspect on unsteady bioconvection flow of Reiner-Philippoff nanofluid along a wedge with swimming microorganisms and Arrhenius activation energy
  publication-title: Numerical Heat Transfer, Part A: Applications
– volume: 39
  start-page: 2550044
  year: 2024
  ident: bb0110
  article-title: Numerical heat featuring in radiative convective ternary nanofluid under induced magnetic field and heat generating source
  publication-title: Int. J. Mod. Phys. B.
– volume: 104
  year: 2023
  ident: bb0155
  article-title: Numerical calculation of unsteady MHD nanofluid flow across two fluctuating discs with chemical reaction and zero mass flux
  publication-title: ZAMM J. Appl. Math. Mechan./Zeitschrift für Angewandte Mathematik und Mechanik
– volume: 830
  year: 2023
  ident: bb0040
  article-title: Numerical analysis of unsteady non-linear mixed convection flow of reiner-philippoff nanofluid along Falkner-Skan wedge with new mass flux condition
  publication-title: Chem. Phys. Lett.
– volume: 159
  year: 2024
  ident: bb0120
  article-title: Advanced intelligent computing ANN for momentum, thermal, and concentration boundary layers in plasma electro hydrodynamics burgers fluid
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 339
  start-page: 820
  year: 2018
  end-page: 836
  ident: bb0230
  article-title: Numerical simulation of couple-stress nanofluid flow in magneto-porous medium with thermal radiation and a chemical reaction
  publication-title: Appl. Math. Comput.
– start-page: 1
  year: 2024
  end-page: 15
  ident: bb0015
  article-title: Numerical investigation of MHD hybrid nanofluid flow with heat transfer subject to thermal radiation across two coaxial cylinders
  publication-title: Numerical Heat Transfer, Part A: Applications
– volume: 116
  year: 2020
  ident: bb0180
  article-title: Significance of activation energy in radiative peristaltic transport of Eyring-Powell nanofluid
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 13
  start-page: 13675
  year: 2023
  ident: bb0250
  article-title: Gyrotactic microorganism hybrid nanofluid over a Riga plate subject to activation energy and heat source: numerical approach
  publication-title: Sci. Rep.
– volume: 8
  start-page: 438
  year: 1969
  end-page: 444
  ident: bb0135
  article-title: The meaning and use of the Arrhenius activation energy
  publication-title: Angew. Chem. Int. Ed. Eng.
– volume: 98
  start-page: 27
  year: 2024
  ident: bb0210
  article-title: Numerical analysis of MHD tangent hyperbolic nanofluid flow over a stretching surface subject to heat source/sink
  publication-title: Pramana
– volume: 17
  year: 2023
  ident: bb0050
  article-title: Impact of radiation on the MHD couple stress hybrid nanofluid flow over a porous sheet with viscous dissipation
  publication-title: Results Eng.
– volume: 18
  year: 2025
  ident: bb0175
  article-title: Radiative Darcy-Forchheimer hybrid nanofluid flow with thermal and bioconvection impacts over a stretching/shrinking sheet
  publication-title: J. Radiat. Res. Appl. Sci.
– volume: 28
  year: 2021
  ident: bb0030
  article-title: Applications of temperature dependent viscosity for Cattaneo–Christov bioconvection flow of couple stress nanofluid over oscillatory stretching surface: a generalized thermal model
  publication-title: Case Stud. Therm. Eng.
– volume: 100
  start-page: 33
  year: 1995
  end-page: 38
  ident: bb0240
  article-title: On liquid diffusion
  publication-title: J. Membr. Sci.
– volume: 48
  start-page: 2807
  year: 2023
  end-page: 2820
  ident: bb0105
  article-title: Modeling of Soret and Dufour’s convective heat transfer in nanofluid flow through a moving needle with artificial neural network
  publication-title: Arab. J. Sci. Eng.
– volume: 10
  year: 2015
  ident: bb0005
  article-title: Influence of magnetic field in three-dimensional flow of couple stress nanofluid over a nonlinearly stretching surface with convective condition
  publication-title: PLoS One
– volume: 14
  year: 2024
  ident: bb0065
  article-title: Parametric analysis of pollutant discharge concentration in non-Newtonian nanofluid flow across a permeable Riga sheet with thermal radiation
  publication-title: AIP Adv.
– volume: 107
  year: 2024
  ident: bb0160
  article-title: Enhancement of heat transfer in thin-film flow of a hybrid nanofluid over an inclined rotating disk subject to thermal radiation and viscous dissipation
  publication-title: Int. J. Heat Fluid Flow
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 10
  ident: bb0025
  article-title: Magnetohydrodynamic impact on Carreau thin film couple stress nanofluid flow over an unsteady stretching sheet
  publication-title: Math. Probl. Eng.
– volume: 152
  year: 2024
  ident: bb0095
  article-title: Combined artificial neural networks and numerical simulation for fractional-time derivatives systems of circular cylinder rotations and magnetic field on heat and mass transfer in an H-shaped cavity
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 155
  year: 2024
  ident: bb0220
  article-title: Entropy generation and efficiency assessment in axisymmetric Homann-Agrawal flows with logarithmic spiraling
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 190
  year: 2023
  ident: bb0075
  article-title: Thermal and solutal slip impacts of tribological coatings on the flow and heat transfer of reiner-philippoff nanofluid lubrication toward a stretching surface: the applications of Darcy-Forchheimer theory
  publication-title: Tribol. Int.
– volume: 147
  year: 2023
  ident: bb0125
  article-title: An artificial intelligence model for heat and mass transfer in an inclined cylindrical annulus with heat generation/absorption and chemical reaction
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 11
  year: 2024
  ident: bb0260
  article-title: Comparative analysis with data prediction of non-linear radiative nano second-grade and Newtonian fluid in presence of sinusoidal magnetic force
  publication-title: Part. Different. Eq. Appl. Math.
– volume: 31
  start-page: 71
  year: 2024
  end-page: 82
  ident: bb0170
  article-title: Energy optimization of water-based hybrid nanomaterials over a wedge-shaped channel
  publication-title: Scientia Iranica
– volume: 105
  year: 2025
  ident: bb0165
  article-title: Heat and mass transfer analysis in flow of Walter’s B nanofluid: A numerical study of dual solutions
  publication-title: ZAMM J. Appl. Math. Mechan./Zeitschrift für Angewandte Mathematik und Mechanik
– volume: 34
  year: 2022
  ident: bb0100
  article-title: Thermo-fluidic transport process in a novel M-shaped cavity packed with non-Darcian porous medium and hybrid nanofluid: application of artificial neural network (ANN)
  publication-title: Phys. Fluids
– volume: 61
  start-page: 8715
  year: 2022
  end-page: 8727
  ident: bb0140
  article-title: Impact of activation energy and MHD on Williamson fluid flow in the presence of bioconvection
  publication-title: Alex. Eng. J.
– volume: 61
  start-page: 1425
  year: 2022
  end-page: 1436
  ident: bb0235
  article-title: Significance of magnetic field and activation energy on the features of stratified mixed radiative-convective couple-stress nanofluid flows with motile microorganisms
  publication-title: Alex. Eng. J.
– volume: 20
  year: 2023
  ident: bb0190
  article-title: Numerical investigation of heat source induced thermal slip effect on trihybrid nanofluid flow over a stretching surface
  publication-title: Results Eng.
– volume: 13
  start-page: 1
  year: 2023
  end-page: 15
  ident: bb0185
  article-title: Energy transmission through radiative ternary nanofluid flow with exponential heat source/sink across an inclined permeable cylinder/plate: numerical computing
  publication-title: Sci. Rep.
– volume: 5
  start-page: 6695
  year: 2023
  end-page: 6704
  ident: bb0200
  article-title: Exploring dual solutions and thermal conductivity in hybrid nanofluids: a comparative study of Xue and Hamilton–Crosser models
  publication-title: Nanoscale Advances
– volume: 39
  year: 2021
  ident: bb0020
  article-title: Joule heating and dissipation effects on Magnetohydrodynamic couple stress nanofluid flow over a bidirectional stretching surface
  publication-title: Int. J. Heat Technol.
– volume: 13
  start-page: 2666
  year: 2023
  ident: bb0150
  article-title: Effects of activation energy and chemical reaction on unsteady MHD dissipative Darcy–Forchheimer squeezed flow of Casson fluid over horizontal channel
  publication-title: Sci. Rep.
– volume: 36
  start-page: 351
  year: 2009
  end-page: 356
  ident: bb0010
  article-title: Combined heat and mass transfer in natural convection flow from a vertical wavy surface in a power-law fluid saturated porous medium with thermal and mass stratification
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 100
  start-page: 1219
  year: 2025
  end-page: 1230
  ident: bb0060
  article-title: Numerical investigation of Cattaneo–Christov double diffusion and mixed convection effects in non-Darcian Sutterby nanofluid using multi objective optimization through RSM
  publication-title: Int. J. Hydrog. Energy
– volume: 212
  year: 2025
  ident: bb0085
  article-title: Entropy optimization in non-newtonian prandtl-eyring fluid using ANN over a curved Riga surface
  publication-title: Int. J. Therm. Sci.
– volume: 15
  start-page: 759
  year: 2025
  ident: bb0130
  article-title: Novel numerical and artificial neural computing with experimental validation towards unsteady micropolar nanofluid flow across a Riga plate
  publication-title: Sci. Rep.
– volume: 43
  start-page: 347
  year: 2023
  end-page: 361
  ident: bb0225
  article-title: Significance of cross diffusion and uneven heat source/sink on the variable reactive 2D Casson flowing fluid through an infinite plate with heat and Ohmic dissipation
  publication-title: Int. J. Model. Simul
– volume: 14
  year: 2017
  ident: bb0080
  article-title: Explained: neural networks
  publication-title: MIT News
– start-page: 1
  year: 2022
  end-page: 18
  ident: bb0035
  article-title: Nonlinear mixed convection couple stress tri-hybrid nanofluids flow in a Darcy–Forchheimer porous medium over a nonlinear stretching surface
  publication-title: Waves Random Complex Media
– volume: 148
  start-page: 13883
  year: 2023
  end-page: 13894
  ident: bb0215
  article-title: Multi-physics modeling of magnetohydrodynamic Carreau fluid flow with thermal radiation and Darcy–Forchheimer effects: a study on Soret and Dufour phenomena
  publication-title: J. Therm. Anal. Calorim.
– volume: 52
  start-page: 1081
  year: 2023
  end-page: 1096
  ident: bb0045
  article-title: Convection of 3D MHD non-Newtonian couple stress nanofluid flow via stretching surface
  publication-title: Heat Transf.
– volume: 4
  year: 2021
  ident: bb0055
  article-title: Thin-film flow of Carreau fluid over a stretching surface including the couple stress and uniform magnetic field
  publication-title: Part. Different. Eq. Appl. Math.
– volume: 47
  start-page: 1
  year: 2022
  end-page: 12
  ident: bb0145
  article-title: Theoretical analysis of activation energy effect on Prandtl–Eyring nanoliquid flow subject to melting condition
  publication-title: J. Non-Equilib. Thermodyn.
– volume: 12
  start-page: 393
  year: 2020
  ident: bb0255
  article-title: A numerical exploration of modified second-grade nanofluid with motile microorganisms, thermal radiation, and Wu’s slip
  publication-title: Symmetry
– volume: 36
  start-page: 351
  issue: 4
  year: 2009
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0010
  article-title: Combined heat and mass transfer in natural convection flow from a vertical wavy surface in a power-law fluid saturated porous medium with thermal and mass stratification
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2009.01.003
– volume: 39
  issue: 1
  year: 2021
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0020
  article-title: Joule heating and dissipation effects on Magnetohydrodynamic couple stress nanofluid flow over a bidirectional stretching surface
  publication-title: Int. J. Heat Technol.
  doi: 10.18280/ijht.390122
– volume: 116
  year: 2020
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0180
  article-title: Significance of activation energy in radiative peristaltic transport of Eyring-Powell nanofluid
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2020.104655
– volume: 190
  year: 2023
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0075
  article-title: Thermal and solutal slip impacts of tribological coatings on the flow and heat transfer of reiner-philippoff nanofluid lubrication toward a stretching surface: the applications of Darcy-Forchheimer theory
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2023.109038
– volume: 200
  year: 2024
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0115
  article-title: Modeling and predicting heat transfer performance in bioconvection flow around a circular cylinder using an artificial neural network approach
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2024.110182
– volume: 14
  year: 2017
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0080
  article-title: Explained: neural networks
  publication-title: MIT News
– volume: 10
  issue: 16
  year: 2024
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0195
  article-title: Influence of engine oil-infused multi-walled carbon nanotubes and titania nanoparticles on a vertically inclined porous surface
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2024.e36169
– volume: 18
  issue: 1
  year: 2025
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0175
  article-title: Radiative Darcy-Forchheimer hybrid nanofluid flow with thermal and bioconvection impacts over a stretching/shrinking sheet
  publication-title: J. Radiat. Res. Appl. Sci.
– volume: 159
  year: 2024
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0120
  article-title: Advanced intelligent computing ANN for momentum, thermal, and concentration boundary layers in plasma electro hydrodynamics burgers fluid
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2024.108195
– volume: 12
  start-page: 393
  issue: 3
  year: 2020
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0255
  article-title: A numerical exploration of modified second-grade nanofluid with motile microorganisms, thermal radiation, and Wu’s slip
  publication-title: Symmetry
  doi: 10.3390/sym12030393
– volume: 43
  start-page: 347
  issue: 4
  year: 2023
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0225
  article-title: Significance of cross diffusion and uneven heat source/sink on the variable reactive 2D Casson flowing fluid through an infinite plate with heat and Ohmic dissipation
  publication-title: Int. J. Model. Simul.
  doi: 10.1080/02286203.2022.2084007
– volume: 10
  issue: 12
  year: 2015
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0005
  article-title: Influence of magnetic field in three-dimensional flow of couple stress nanofluid over a nonlinearly stretching surface with convective condition
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0145332
– volume: 830
  year: 2023
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0040
  article-title: Numerical analysis of unsteady non-linear mixed convection flow of reiner-philippoff nanofluid along Falkner-Skan wedge with new mass flux condition
  publication-title: Chem. Phys. Lett.
– volume: 20
  year: 2023
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0190
  article-title: Numerical investigation of heat source induced thermal slip effect on trihybrid nanofluid flow over a stretching surface
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2023.101536
– volume: 105
  issue: 1
  year: 2025
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0165
  article-title: Heat and mass transfer analysis in flow of Walter’s B nanofluid: A numerical study of dual solutions
  publication-title: ZAMM J. Appl. Math. Mechan./Zeitschrift für Angewandte Mathematik und Mechanik
– volume: 5
  start-page: 6695
  issue: 23
  year: 2023
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0200
  article-title: Exploring dual solutions and thermal conductivity in hybrid nanofluids: a comparative study of Xue and Hamilton–Crosser models
  publication-title: Nanoscale Advances
  doi: 10.1039/D3NA00503H
– volume: 2021
  start-page: 1
  year: 2021
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0025
  article-title: Magnetohydrodynamic impact on Carreau thin film couple stress nanofluid flow over an unsteady stretching sheet
  publication-title: Math. Probl. Eng.
– volume: 61
  start-page: 1425
  issue: 2
  year: 2022
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0235
  article-title: Significance of magnetic field and activation energy on the features of stratified mixed radiative-convective couple-stress nanofluid flows with motile microorganisms
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2021.06.047
– volume: 212
  year: 2025
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0085
  article-title: Entropy optimization in non-newtonian prandtl-eyring fluid using ANN over a curved Riga surface
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2025.109765
– year: 1822
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0245
– volume: 14
  issue: 4
  year: 2024
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0065
  article-title: Parametric analysis of pollutant discharge concentration in non-Newtonian nanofluid flow across a permeable Riga sheet with thermal radiation
  publication-title: AIP Adv.
  doi: 10.1063/5.0200401
– volume: 13
  start-page: 1
  issue: 1
  year: 2023
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0185
  article-title: Energy transmission through radiative ternary nanofluid flow with exponential heat source/sink across an inclined permeable cylinder/plate: numerical computing
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-49481-8
– volume: 47
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0145
  article-title: Theoretical analysis of activation energy effect on Prandtl–Eyring nanoliquid flow subject to melting condition
  publication-title: J. Non-Equilib. Thermodyn.
  doi: 10.1515/jnet-2020-0092
– volume: 13
  start-page: 2666
  issue: 1
  year: 2023
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0150
  article-title: Effects of activation energy and chemical reaction on unsteady MHD dissipative Darcy–Forchheimer squeezed flow of Casson fluid over horizontal channel
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-29702-w
– volume: 147
  year: 2023
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0125
  article-title: An artificial intelligence model for heat and mass transfer in an inclined cylindrical annulus with heat generation/absorption and chemical reaction
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2023.106956
– volume: 13
  start-page: 13675
  issue: 1
  year: 2023
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0250
  article-title: Gyrotactic microorganism hybrid nanofluid over a Riga plate subject to activation energy and heat source: numerical approach
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-27562-y
– volume: 104
  year: 2023
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0155
  article-title: Numerical calculation of unsteady MHD nanofluid flow across two fluctuating discs with chemical reaction and zero mass flux
  publication-title: ZAMM J. Appl. Math. Mechan./Zeitschrift für Angewandte Mathematik und Mechanik
– volume: 48
  start-page: 2807
  issue: 3
  year: 2023
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0105
  article-title: Modeling of Soret and Dufour’s convective heat transfer in nanofluid flow through a moving needle with artificial neural network
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-022-06945-9
– volume: 107
  year: 2024
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0160
  article-title: Enhancement of heat transfer in thin-film flow of a hybrid nanofluid over an inclined rotating disk subject to thermal radiation and viscous dissipation
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2024.109360
– volume: 52
  start-page: 1081
  issue: 2
  year: 2023
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0045
  article-title: Convection of 3D MHD non-Newtonian couple stress nanofluid flow via stretching surface
  publication-title: Heat Transf.
  doi: 10.1002/htj.22730
– volume: 8
  start-page: 438
  issue: 6
  year: 1969
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0135
  article-title: The meaning and use of the Arrhenius activation energy
  publication-title: Angew. Chem. Int. Ed. Eng.
  doi: 10.1002/anie.196904381
– volume: 155
  year: 2024
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0220
  article-title: Entropy generation and efficiency assessment in axisymmetric Homann-Agrawal flows with logarithmic spiraling
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2024.107564
– volume: 152
  year: 2024
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0095
  article-title: Combined artificial neural networks and numerical simulation for fractional-time derivatives systems of circular cylinder rotations and magnetic field on heat and mass transfer in an H-shaped cavity
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2024.107314
– start-page: 1
  year: 2024
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0015
  article-title: Numerical investigation of MHD hybrid nanofluid flow with heat transfer subject to thermal radiation across two coaxial cylinders
– volume: 4
  year: 2021
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0055
  article-title: Thin-film flow of Carreau fluid over a stretching surface including the couple stress and uniform magnetic field
  publication-title: Part. Different. Eq. Appl. Math.
– volume: 61
  start-page: 8715
  issue: 11
  year: 2022
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0140
  article-title: Impact of activation energy and MHD on Williamson fluid flow in the presence of bioconvection
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2022.02.013
– volume: 148
  start-page: 13883
  issue: 24
  year: 2023
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0215
  article-title: Multi-physics modeling of magnetohydrodynamic Carreau fluid flow with thermal radiation and Darcy–Forchheimer effects: a study on Soret and Dufour phenomena
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-023-12699-9
– volume: 339
  start-page: 820
  year: 2018
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0230
  article-title: Numerical simulation of couple-stress nanofluid flow in magneto-porous medium with thermal radiation and a chemical reaction
  publication-title: Appl. Math. Comput.
– volume: 100
  start-page: 1219
  year: 2025
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0060
  article-title: Numerical investigation of Cattaneo–Christov double diffusion and mixed convection effects in non-Darcian Sutterby nanofluid using multi objective optimization through RSM
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2024.12.422
– volume: 31
  start-page: 71
  issue: 1
  year: 2024
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0170
  article-title: Energy optimization of water-based hybrid nanomaterials over a wedge-shaped channel
  publication-title: Scientia Iranica
– volume: 11
  year: 2024
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0260
  article-title: Comparative analysis with data prediction of non-linear radiative nano second-grade and Newtonian fluid in presence of sinusoidal magnetic force
  publication-title: Part. Different. Eq. Appl. Math.
– volume: 15
  start-page: 759
  issue: 1
  year: 2025
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0130
  article-title: Novel numerical and artificial neural computing with experimental validation towards unsteady micropolar nanofluid flow across a Riga plate
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-84480-3
– volume: 98
  start-page: 27
  issue: 1
  year: 2024
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0210
  article-title: Numerical analysis of MHD tangent hyperbolic nanofluid flow over a stretching surface subject to heat source/sink
  publication-title: Pramana
  doi: 10.1007/s12043-023-02702-1
– start-page: 1
  year: 2022
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0035
  article-title: Nonlinear mixed convection couple stress tri-hybrid nanofluids flow in a Darcy–Forchheimer porous medium over a nonlinear stretching surface
  publication-title: Waves Random Complex Media
– start-page: 1
  year: 2024
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0205
  article-title: Darcy-Forchheimer aspect on unsteady bioconvection flow of Reiner-Philippoff nanofluid along a wedge with swimming microorganisms and Arrhenius activation energy
– volume: 34
  issue: 3
  year: 2022
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0100
  article-title: Thermo-fluidic transport process in a novel M-shaped cavity packed with non-Darcian porous medium and hybrid nanofluid: application of artificial neural network (ANN)
  publication-title: Phys. Fluids
  doi: 10.1063/5.0082942
– volume: 17
  year: 2023
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0050
  article-title: Impact of radiation on the MHD couple stress hybrid nanofluid flow over a porous sheet with viscous dissipation
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2023.100905
– volume: 38
  issue: 05
  year: 2024
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0070
  article-title: Rheology of gyrotactic microorganisms in Jeffrey fluid flow: a stability analysis
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/S0217984924500039
– volume: 28
  year: 2021
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0030
  article-title: Applications of temperature dependent viscosity for Cattaneo–Christov bioconvection flow of couple stress nanofluid over oscillatory stretching surface: a generalized thermal model
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2021.101412
– volume: 39
  start-page: 2550044
  issue: 7
  year: 2024
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0110
  article-title: Numerical heat featuring in radiative convective ternary nanofluid under induced magnetic field and heat generating source
  publication-title: Int. J. Mod. Phys. B.
  doi: 10.1142/S0217979225500444
– volume: 100
  start-page: 33
  year: 1995
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0240
  article-title: On liquid diffusion
  publication-title: J. Membr. Sci.
  doi: 10.1016/0376-7388(94)00230-V
– volume: 26
  start-page: 726
  issue: 2
  year: 2019
  ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0090
  article-title: A combination of computational fluid dynamics, artificial neural network, and support vectors machines models to predict flow variables in curved channel
  publication-title: Scientia Iranica
SSID ssj0001818
Score 2.4205043
Snippet The heterogeneous fluid model is expressed for the nanofluid flow to study the consequence of Fourier's and Fick's laws. The magnetohydrodynamics couple-stress...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 108947
SubjectTerms ANN
Bioconvection
Cattaneo-Christov heat flux
Couple-stress nanofluid
Exponential heat source/sink
Modified mass flux
Title Study of bioconvective couple-stress nanofluid flow subject to stratified conditions by using numerical and Levenberg Marquardt back-propagation algorithms
URI https://dx.doi.org/10.1016/j.icheatmasstransfer.2025.108947
Volume 164
WOSCitedRecordID wos001469454300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0735-1933
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001818
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2FFCo4IChUlC_tgQNS5Mgfu7b3WJUiQKhCokjhZK29a-pg7JDYpfwWfg3_jFnv2pu0CAUhLlZkyeN15mXmefJmFqFnAtICD13mxCykDuRb6cRALBwGudf3AshJUnSbTUQnJ_Fsxt6NRj_7XpjzMqqq-OKCLf6rq-EcOFu1zv6FuwejcAI-g9PhCG6H41aOf9-PiU6LutOUdxFtktXtopSO6Q2peFXnZVuISV7W3yarNlX1GEVE9RzdXDFTuFpoRZciqW1XVaha_RePnjDwVs1_Ugox1fPzVaGtmaQ8--xAXIZIpcHFy0_1smjOzFz0udXO21Jktt6n0kl0VZLo7vEF6L3ayQL4tVUSf2xN4fas5YWVKEgduV7whTQZ2RQ0fGrlgybuRQF1gFcGG0E6JGth1nNjpgd1XskAuhgxnyohLW_UEvsVTtXNpvbSzeHbl5LiIFXsVXDz5KrFRFlMtMVraMePKIvHaOfw9fHszUAHgEJ1dKB_ql303IoM_7zK33OlNf5zegfdNi8u-FAD7i4ayWoP3VobZ7mHbnRy4mx1D_3oQIjrHG-AEG-AEA8gxAqE2IAQNzW2IMQWhDj9jjsQ4gGEGACCBxDiAYT4MgixBeF99OHl8enRK8dsA-Jkfuw1jiSCShYqrk6IpCGwC85C6XMRcU-EUkQZ5T4nVOSBF2SBy11K4UUhy6UgBBLMPhpXdSUfIBxFOY8EyUMRCkKBlgFhJi6JZCqozzg9QKz_wpOFnvaSbAuAA3TUeygx7FWz0gSgubWVh_-wgkfopv09PUbjZtnKJ-h6dt4Uq-VTg8tfjn7V_Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+of+bioconvective+couple-stress+nanofluid+flow+subject+to+stratified+conditions+by+using+numerical+and+Levenberg+Marquardt+back-propagation+algorithms&rft.jtitle=International+communications+in+heat+and+mass+transfer&rft.au=Yuan%2C+Shuai&rft.au=Cheng%2C+Dapeng&rft.date=2025-05-01&rft.issn=0735-1933&rft.volume=164&rft.spage=108947&rft_id=info:doi/10.1016%2Fj.icheatmasstransfer.2025.108947&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_icheatmasstransfer_2025_108947
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0735-1933&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0735-1933&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0735-1933&client=summon