Optimizing Sparse Linear Algebra for Large-Scale Graph Analytics
Emerging data-intensive applications attempt to process and provide insight into vast amounts of online data. A new class of linear algebra algorithms can efficiently execute sparse matrix-matrix and matrix-vector multiplications on large-scale, shared memory multiprocessor systems, enabling analyst...
Uložené v:
| Vydané v: | Computer (Long Beach, Calif.) Ročník 48; číslo 8; s. 26 - 34 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.08.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0018-9162, 1558-0814 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Emerging data-intensive applications attempt to process and provide insight into vast amounts of online data. A new class of linear algebra algorithms can efficiently execute sparse matrix-matrix and matrix-vector multiplications on large-scale, shared memory multiprocessor systems, enabling analysts to more easily discern meaningful data relationships, such as those in social networks. |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 0018-9162 1558-0814 |
| DOI: | 10.1109/MC.2015.228 |