A brief account of Klein’s icosahedral extensions
We present an alternative relatively easy way to understand and determine the zeros of a quintic polynomial whose Galois group is isomorphic to the group of rotational symmetries of a regular icosahedron. The extensive algebraic procedures of Klein in his famous Vorlesungen über das Ikosaeder und di...
Uložené v:
| Vydané v: | Indagationes mathematicae Ročník 33; číslo 2; s. 482 - 493 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Amsterdam
Elsevier B.V
01.03.2022
Elsevier Science Ltd |
| Predmet: | |
| ISSN: | 0019-3577, 1872-6100 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We present an alternative relatively easy way to understand and determine the zeros of a quintic polynomial whose Galois group is isomorphic to the group of rotational symmetries of a regular icosahedron. The extensive algebraic procedures of Klein in his famous Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade are here shortened via Heymann’s theory of resolvents. Also, we give a complete explanation of the so-called icosahedral equation and its solution in terms of Gaussian hypergeometric functions. As an innovative element, we construct this solution by using algebraic transformations of hypergeometric series. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0019-3577 1872-6100 |
| DOI: | 10.1016/j.indag.2021.10.002 |