A brief account of Klein’s icosahedral extensions

We present an alternative relatively easy way to understand and determine the zeros of a quintic polynomial whose Galois group is isomorphic to the group of rotational symmetries of a regular icosahedron. The extensive algebraic procedures of Klein in his famous Vorlesungen über das Ikosaeder und di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indagationes mathematicae Jg. 33; H. 2; S. 482 - 493
Hauptverfasser: Solanilla, Leonardo, Barreto, Erick S., Morales, Viviana
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 01.03.2022
Elsevier Science Ltd
Schlagworte:
ISSN:0019-3577, 1872-6100
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an alternative relatively easy way to understand and determine the zeros of a quintic polynomial whose Galois group is isomorphic to the group of rotational symmetries of a regular icosahedron. The extensive algebraic procedures of Klein in his famous Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade are here shortened via Heymann’s theory of resolvents. Also, we give a complete explanation of the so-called icosahedral equation and its solution in terms of Gaussian hypergeometric functions. As an innovative element, we construct this solution by using algebraic transformations of hypergeometric series.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0019-3577
1872-6100
DOI:10.1016/j.indag.2021.10.002