Finite Convergence of the Partial Inverse Algorithm

In Refs. 1-2, Lefebvre and Michelot proved the finite convergence of the partial inverse algorithm applied to a polyhedral convex function by means of some suitable tools of convex analysis. They obtained their result under some assumptions on the primal and dual solution sets. The aim of this note...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications Jg. 95; H. 3; S. 693 - 699
1. Verfasser: Daldoul, M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY Springer 01.12.1997
Springer Nature B.V
Schlagworte:
ISSN:0022-3239, 1573-2878
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In Refs. 1-2, Lefebvre and Michelot proved the finite convergence of the partial inverse algorithm applied to a polyhedral convex function by means of some suitable tools of convex analysis. They obtained their result under some assumptions on the primal and dual solution sets. The aim of this note is to show that the proof can be extended to remove the nasty assumption on the dual solution set. The result is in conformity with the proof given in Ref. 3, which has been obtained using the concept of folding.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0022-3239
1573-2878
DOI:10.1023/A:1022634208371