Finite Convergence of the Partial Inverse Algorithm

In Refs. 1-2, Lefebvre and Michelot proved the finite convergence of the partial inverse algorithm applied to a polyhedral convex function by means of some suitable tools of convex analysis. They obtained their result under some assumptions on the primal and dual solution sets. The aim of this note...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of optimization theory and applications Ročník 95; číslo 3; s. 693 - 699
Hlavný autor: Daldoul, M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY Springer 01.12.1997
Springer Nature B.V
Predmet:
ISSN:0022-3239, 1573-2878
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In Refs. 1-2, Lefebvre and Michelot proved the finite convergence of the partial inverse algorithm applied to a polyhedral convex function by means of some suitable tools of convex analysis. They obtained their result under some assumptions on the primal and dual solution sets. The aim of this note is to show that the proof can be extended to remove the nasty assumption on the dual solution set. The result is in conformity with the proof given in Ref. 3, which has been obtained using the concept of folding.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0022-3239
1573-2878
DOI:10.1023/A:1022634208371