Color three-dimensional imaging based on patterned illumination using a negative pinhole array

Reflectance confocal microscopy is widely used for non-destructive optical three-dimensional (3D) imaging. In confocal microscopy, a stack of sequential two-dimensional (2D) images with respect to the axial position is typically needed to reconstruct a 3D image. As a result, in conventional confocal...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optics express Ročník 29; číslo 5; s. 6509
Hlavní autori: Kim, Chang-Soo, Kim, Junyoung, Yoo, Hongki
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.03.2021
ISSN:1094-4087, 1094-4087
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Reflectance confocal microscopy is widely used for non-destructive optical three-dimensional (3D) imaging. In confocal microscopy, a stack of sequential two-dimensional (2D) images with respect to the axial position is typically needed to reconstruct a 3D image. As a result, in conventional confocal microscopy, acquisition speed is often limited by the rate of mechanical scanning in both the transverse and axial directions. We previously reported a high-speed parallel confocal detection method using a pinhole array for color 3D imaging without any mechanical scanners. Here, we report a high-speed color 3D imaging method based on patterned illumination employing a negative pinhole array, whose optical characteristics are the reverse of the conventional pinhole array for transmitting light. The negative pinhole array solves the inherent limitation of a conventional pinhole array, i.e., low transmittance, meaning brighter color images with abundant color information can be acquired. We also propose a 3D image processing algorithm based on the 2D cross-correlation between the acquired image and filtering masks, to produce an axial response. By using four-different filtering masks, we were able to increase the sampling points in calculation of height and enhance the lateral resolution of the color acquisition by a factor of four. The feasibility of high-speed non-contact color 3D measurement with the improved lateral resolution and brightness provided by the negative pinhole array was demonstrated by imaging various specimens. We anticipate that this high-speed color 3D measurement technology with negative pinhole array will be a useful tool in a variety of fields where rapid and accurate non-contact measurement are required, such as industrial inspection and dental scanning.
AbstractList Reflectance confocal microscopy is widely used for non-destructive optical three-dimensional (3D) imaging. In confocal microscopy, a stack of sequential two-dimensional (2D) images with respect to the axial position is typically needed to reconstruct a 3D image. As a result, in conventional confocal microscopy, acquisition speed is often limited by the rate of mechanical scanning in both the transverse and axial directions. We previously reported a high-speed parallel confocal detection method using a pinhole array for color 3D imaging without any mechanical scanners. Here, we report a high-speed color 3D imaging method based on patterned illumination employing a negative pinhole array, whose optical characteristics are the reverse of the conventional pinhole array for transmitting light. The negative pinhole array solves the inherent limitation of a conventional pinhole array, i.e., low transmittance, meaning brighter color images with abundant color information can be acquired. We also propose a 3D image processing algorithm based on the 2D cross-correlation between the acquired image and filtering masks, to produce an axial response. By using four-different filtering masks, we were able to increase the sampling points in calculation of height and enhance the lateral resolution of the color acquisition by a factor of four. The feasibility of high-speed non-contact color 3D measurement with the improved lateral resolution and brightness provided by the negative pinhole array was demonstrated by imaging various specimens. We anticipate that this high-speed color 3D measurement technology with negative pinhole array will be a useful tool in a variety of fields where rapid and accurate non-contact measurement are required, such as industrial inspection and dental scanning.Reflectance confocal microscopy is widely used for non-destructive optical three-dimensional (3D) imaging. In confocal microscopy, a stack of sequential two-dimensional (2D) images with respect to the axial position is typically needed to reconstruct a 3D image. As a result, in conventional confocal microscopy, acquisition speed is often limited by the rate of mechanical scanning in both the transverse and axial directions. We previously reported a high-speed parallel confocal detection method using a pinhole array for color 3D imaging without any mechanical scanners. Here, we report a high-speed color 3D imaging method based on patterned illumination employing a negative pinhole array, whose optical characteristics are the reverse of the conventional pinhole array for transmitting light. The negative pinhole array solves the inherent limitation of a conventional pinhole array, i.e., low transmittance, meaning brighter color images with abundant color information can be acquired. We also propose a 3D image processing algorithm based on the 2D cross-correlation between the acquired image and filtering masks, to produce an axial response. By using four-different filtering masks, we were able to increase the sampling points in calculation of height and enhance the lateral resolution of the color acquisition by a factor of four. The feasibility of high-speed non-contact color 3D measurement with the improved lateral resolution and brightness provided by the negative pinhole array was demonstrated by imaging various specimens. We anticipate that this high-speed color 3D measurement technology with negative pinhole array will be a useful tool in a variety of fields where rapid and accurate non-contact measurement are required, such as industrial inspection and dental scanning.
Reflectance confocal microscopy is widely used for non-destructive optical three-dimensional (3D) imaging. In confocal microscopy, a stack of sequential two-dimensional (2D) images with respect to the axial position is typically needed to reconstruct a 3D image. As a result, in conventional confocal microscopy, acquisition speed is often limited by the rate of mechanical scanning in both the transverse and axial directions. We previously reported a high-speed parallel confocal detection method using a pinhole array for color 3D imaging without any mechanical scanners. Here, we report a high-speed color 3D imaging method based on patterned illumination employing a negative pinhole array, whose optical characteristics are the reverse of the conventional pinhole array for transmitting light. The negative pinhole array solves the inherent limitation of a conventional pinhole array, i.e., low transmittance, meaning brighter color images with abundant color information can be acquired. We also propose a 3D image processing algorithm based on the 2D cross-correlation between the acquired image and filtering masks, to produce an axial response. By using four-different filtering masks, we were able to increase the sampling points in calculation of height and enhance the lateral resolution of the color acquisition by a factor of four. The feasibility of high-speed non-contact color 3D measurement with the improved lateral resolution and brightness provided by the negative pinhole array was demonstrated by imaging various specimens. We anticipate that this high-speed color 3D measurement technology with negative pinhole array will be a useful tool in a variety of fields where rapid and accurate non-contact measurement are required, such as industrial inspection and dental scanning.
Author Yoo, Hongki
Kim, Chang-Soo
Kim, Junyoung
Author_xml – sequence: 1
  givenname: Chang-Soo
  surname: Kim
  fullname: Kim, Chang-Soo
– sequence: 2
  givenname: Junyoung
  surname: Kim
  fullname: Kim, Junyoung
– sequence: 3
  givenname: Hongki
  orcidid: 0000-0001-9819-3135
  surname: Yoo
  fullname: Yoo, Hongki
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33726170$$D View this record in MEDLINE/PubMed
BookMark eNpN0MtKAzEUBuAgFWurC19AstTF1NzmtpRSL1DoRrcOmclJG8kkYzIj9O2d0iquzoWPA-efoYnzDhC6oWRBeSYeNquFoFlZlmfokpJSJIIU-eRfP0WzGD8JoSIv8ws05TxnGc3JJfpYeusD7ncBIFGmBReNd9Ji08qtcVtcywgKe4c72fcQ3DgYa4fWONmPEg_xoCR2sB0X34A743beApYhyP0VOtfSRrg-1Tl6f1q9LV-S9eb5dfm4ThpWkD4BorOmprrQVBOtGHDRQAqFFqpmSvOaaa2pFE1KS57JXBdMyXTEqUxBsYLP0d3xbhf81wCxr1oTG7BWOvBDrFhKGCOZ4Ad6e6JD3YKqujC-GvbVbyYjuD-CJvgYA-g_Qkl1yLvarKpj3vwH1_dz2g
Cites_doi 10.1007/BF00697444
10.1016/j.optlaseng.2013.02.012
10.1364/AO.33.000585
10.1371/journal.pone.0072265
10.1038/nmeth815
10.1117/1.601023
10.1364/OE.24.003806
10.1364/AO.26.003232
10.1016/j.optlaseng.2003.11.002
10.1364/AOP.3.000128
10.1109/34.216735
10.1364/AO.39.002605
10.1364/AO.38.006565
10.1016/j.optcom.2013.02.013
10.1016/j.optlaseng.2016.03.018
10.1364/OE.20.023061
10.1364/OE.27.028466
10.1016/S0262-8856(97)00053-X
10.1117/1.602155
10.1016/0146-664X(82)90096-X
10.1016/j.optlaseng.2018.02.017
10.1364/AO.56.005198
10.1016/j.gie.2011.07.020
10.1364/OE.21.023611
10.1016/0734-189X(85)90056-8
10.1364/OL.10.000053
10.5772/14545
10.1142/3014
10.1046/j.1365-2818.1997.2080772.x
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1364/OE.416999
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1094-4087
ExternalDocumentID 33726170
10_1364_OE_416999
Genre Journal Article
GroupedDBID ---
123
29N
2WC
8SL
AAFWJ
AAWJZ
AAYXX
ABGOQ
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
CS3
DIK
DSZJF
DU5
E3Z
EBS
F5P
GROUPED_DOAJ
GX1
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
NPM
ROP
7X8
ID FETCH-LOGICAL-c280t-e0f6cb1f8f1f0fd2e34ce5e8f4db2df3b2fff1a4c51936a7f82da5f1f5a5ed283
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000624968100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1094-4087
IngestDate Sun Nov 09 11:28:36 EST 2025
Wed Feb 19 02:29:17 EST 2025
Sat Nov 29 02:57:40 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c280t-e0f6cb1f8f1f0fd2e34ce5e8f4db2df3b2fff1a4c51936a7f82da5f1f5a5ed283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9819-3135
OpenAccessLink https://doi.org/10.1364/oe.416999
PMID 33726170
PQID 2502206438
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2502206438
pubmed_primary_33726170
crossref_primary_10_1364_OE_416999
PublicationCentury 2000
PublicationDate 2021-03-01
2021-Mar-01
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Optics express
PublicationTitleAlternate Opt Express
PublicationYear 2021
References Jeong (oe-29-5-6509-R20) 2016; 24
Belcher (oe-29-5-6509-R6) 2013; 8
Carlsson (oe-29-5-6509-R12) 1985; 10
Fewer (oe-29-5-6509-R16) 1997; 187
Zhang (oe-29-5-6509-R22) 2018; 106
Valkenburg (oe-29-5-6509-R24) 1998; 16
Ishihara (oe-29-5-6509-R17) 1999; 38
Chen (oe-29-5-6509-R33) 2013; 298–299
Hamilton (oe-29-5-6509-R7) 1982; 27
Kaplonek (oe-29-5-6509-R5) 2012; 7
Maruyama (oe-29-5-6509-R38) 1993; 15
Geng (oe-29-5-6509-R23) 2011; 3
Zuo (oe-29-5-6509-R28) 2013; 51
Carrihill (oe-29-5-6509-R26) 1985; 32
Carlsson (oe-29-5-6509-R10) 1987; 26
Cha (oe-29-5-6509-R4) 1999
Conchello (oe-29-5-6509-R2) 2005; 2
Cha (oe-29-5-6509-R39) 2000; 39
Leeghim (oe-29-5-6509-R1) 2012; 20
Choi (oe-29-5-6509-R13) 2013; 21
Xi (oe-29-5-6509-R14) 2011
Silva (oe-29-5-6509-R35) 2017; 56
Kim (oe-29-5-6509-R21) 2019; 27
Geng (oe-29-5-6509-R34) 1996; 35
Gu (oe-29-5-6509-R3) 1996
Sansoni (oe-29-5-6509-R32) 1999; 38
Conchello (oe-29-5-6509-R15) 1994; 33
Yoo (oe-29-5-6509-R9) 2011; 74
Xing (oe-29-5-6509-R29) 2016; 87
Su (oe-29-5-6509-R31) 2004; 42
Sheppard (oe-29-5-6509-R40) 1997
Posdamer (oe-29-5-6509-R27) 1982; 18
References_xml – volume: 27
  start-page: 211
  year: 1982
  ident: oe-29-5-6509-R7
  publication-title: Appl. Phys. B
  doi: 10.1007/BF00697444
– volume: 51
  start-page: 953
  year: 2013
  ident: oe-29-5-6509-R28
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2013.02.012
– volume: 33
  start-page: 585
  year: 1994
  ident: oe-29-5-6509-R15
  publication-title: Appl. Opt.
  doi: 10.1364/AO.33.000585
– volume: 8
  start-page: e72265
  year: 2013
  ident: oe-29-5-6509-R6
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0072265
– year: 1999
  ident: oe-29-5-6509-R4
  article-title: 3D profilometry using a dynamically configurable confocal microscope
– volume: 2
  start-page: 920
  year: 2005
  ident: oe-29-5-6509-R2
  publication-title: Nat. Methods
  doi: 10.1038/nmeth815
– volume: 35
  start-page: 376
  year: 1996
  ident: oe-29-5-6509-R34
  publication-title: Opt. Eng.
  doi: 10.1117/1.601023
– volume: 24
  start-page: 3806
  year: 2016
  ident: oe-29-5-6509-R20
  publication-title: Opt. Express
  doi: 10.1364/OE.24.003806
– volume: 26
  start-page: 3232
  year: 1987
  ident: oe-29-5-6509-R10
  publication-title: Appl. Opt.
  doi: 10.1364/AO.26.003232
– volume: 42
  start-page: 245
  year: 2004
  ident: oe-29-5-6509-R31
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2003.11.002
– volume: 3
  start-page: 128
  year: 2011
  ident: oe-29-5-6509-R23
  publication-title: Adv. Opt. Photonics
  doi: 10.1364/AOP.3.000128
– volume: 15
  start-page: 647
  year: 1993
  ident: oe-29-5-6509-R38
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
  doi: 10.1109/34.216735
– volume: 39
  start-page: 2605
  year: 2000
  ident: oe-29-5-6509-R39
  publication-title: Appl. Opt.
  doi: 10.1364/AO.39.002605
– volume: 38
  start-page: 6565
  year: 1999
  ident: oe-29-5-6509-R32
  publication-title: Appl. Opt.
  doi: 10.1364/AO.38.006565
– volume: 298–299
  start-page: 54
  year: 2013
  ident: oe-29-5-6509-R33
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2013.02.013
– volume: 87
  start-page: 97
  year: 2016
  ident: oe-29-5-6509-R29
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2016.03.018
– volume: 7
  start-page: 661
  year: 2012
  ident: oe-29-5-6509-R5
  publication-title: Journal of Engineering Science and Technology
– volume: 20
  start-page: 23061
  year: 2012
  ident: oe-29-5-6509-R1
  publication-title: Opt. Express
  doi: 10.1364/OE.20.023061
– volume: 27
  start-page: 28466
  year: 2019
  ident: oe-29-5-6509-R21
  publication-title: Opt. Express
  doi: 10.1364/OE.27.028466
– volume: 16
  start-page: 99
  year: 1998
  ident: oe-29-5-6509-R24
  publication-title: Image Vis. Comput.
  doi: 10.1016/S0262-8856(97)00053-X
– volume: 38
  start-page: 1035
  year: 1999
  ident: oe-29-5-6509-R17
  publication-title: Opt. Eng.
  doi: 10.1117/1.602155
– volume: 18
  start-page: 1
  year: 1982
  ident: oe-29-5-6509-R27
  publication-title: Comput Vis Graph Image Process
  doi: 10.1016/0146-664X(82)90096-X
– volume: 106
  start-page: 119
  year: 2018
  ident: oe-29-5-6509-R22
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2018.02.017
– volume: 56
  start-page: 5198
  year: 2017
  ident: oe-29-5-6509-R35
  publication-title: Appl. Opt.
  doi: 10.1364/AO.56.005198
– volume: 74
  start-page: 992
  year: 2011
  ident: oe-29-5-6509-R9
  publication-title: Gastrointestinal Endoscopy
  doi: 10.1016/j.gie.2011.07.020
– year: 1997
  ident: oe-29-5-6509-R40
– volume: 21
  start-page: 23611
  year: 2013
  ident: oe-29-5-6509-R13
  publication-title: Opt. Express
  doi: 10.1364/OE.21.023611
– volume: 32
  start-page: 337
  year: 1985
  ident: oe-29-5-6509-R26
  publication-title: Comput Vis Graph Image Process
  doi: 10.1016/0734-189X(85)90056-8
– volume: 10
  start-page: 53
  year: 1985
  ident: oe-29-5-6509-R12
  publication-title: Opt. Lett.
  doi: 10.1364/OL.10.000053
– year: 2011
  ident: oe-29-5-6509-R14
  article-title: Scanning and Image Reconstruction Techniques in Confocal Laser Scanning Microscopy
  doi: 10.5772/14545
– year: 1996
  ident: oe-29-5-6509-R3
  article-title: Principles of Three-Dimensional Imaging in Confocal Microscopes
  doi: 10.1142/3014
– volume: 187
  start-page: 54
  year: 1997
  ident: oe-29-5-6509-R16
  publication-title: J. Microsc.
  doi: 10.1046/j.1365-2818.1997.2080772.x
SSID ssj0014797
Score 2.3560169
Snippet Reflectance confocal microscopy is widely used for non-destructive optical three-dimensional (3D) imaging. In confocal microscopy, a stack of sequential...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
StartPage 6509
Title Color three-dimensional imaging based on patterned illumination using a negative pinhole array
URI https://www.ncbi.nlm.nih.gov/pubmed/33726170
https://www.proquest.com/docview/2502206438
Volume 29
WOSCitedRecordID wos000624968100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: DOA
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: M~E
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9NAFB7cVWFfxPvWSxlFfAlxk8lt8ihLlkXWVrALfTJMMjNLUCcxbaW--Ns9c2m21RXWB19CGdqknC85c275PoRekTQRCWeBz-qU-TFLQnjmROyzjPOYV7DDR9KITWSTCZ3P8w9uiH1h5AQypeh6nXf_FWpYA7D1q7P_APdwUliAzwA6HAF2OF4L-OP2i5kc7IXwuebut7wbXvPVChLpfYvrHkFnqDXBzXqNljtubF3QW5nqAfOUuLCk4F2jtIiux_qe7TSBp53heBbrbpjjYIM-s3ltwf_Ytr-tv1upH9rDXLobU6w9bdXF52a7BkG2hrCc24QkETJRt3WKK9acr3XVjWa7m20cpybyu9KjR2kMFp8WbyByzK2W0i5r9mRanpyfnZWzYj573X3ztaCYbrw7dZU9dJNkSa6n_d7_LIYGU5xZ3Z3Nn3SkU3C1o-Fau6HKX_IPE4fM7qI7LoHAby3w99ANoe6j22aQt148QJ8M_PgP-LGDHxv4cavwAD_ehh8b-DHDG_ixgx8b-B-i85NidnzqOw0NvyY0WPoikGldhZLKUAaSExHFtUgElfAgEi6jikgpQxbXOpJPWSYp4SyBLycsERxiz0doX7VKHCIcp5LLkAqI-AXkyYJWuUxoRXNZ0SqqghF6uTFX2VmqlNL0S9O4nBaltekIvdgYsgRHprtTTIl2tSghFidEB8h0hB5bCw-niaLMKAc8ucavn6KDy1v0Gdpf9ivxHN2qvy-bRT9Ge9mcjk3lZWzuiF9DiHoP
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Color+three-dimensional+imaging+based+on+patterned+illumination+using+a+negative+pinhole+array&rft.jtitle=Optics+express&rft.au=Kim%2C+Chang-Soo&rft.au=Kim%2C+Junyoung&rft.au=Yoo%2C+Hongki&rft.date=2021-03-01&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=29&rft.issue=5&rft.spage=6509&rft_id=info:doi/10.1364%2FOE.416999&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon