A(DP)^2SGD: Asynchronous Decentralized Parallel Stochastic Gradient Descent with Differential Privacy
As deep learning models are usually massive and complex, distributed learning is essential for increasing training efficiency. Moreover, in many real-world application scenarios like healthcare, distributed learning can also keep the data local and protect privacy. Recently, the asynchronous decentr...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence Jg. 44; H. 11; S. 1 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
01.11.2022
|
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!