A(DP)^2SGD: Asynchronous Decentralized Parallel Stochastic Gradient Descent with Differential Privacy

As deep learning models are usually massive and complex, distributed learning is essential for increasing training efficiency. Moreover, in many real-world application scenarios like healthcare, distributed learning can also keep the data local and protect privacy. Recently, the asynchronous decentr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence Jg. 44; H. 11; S. 1
Hauptverfasser: Xu, Jie, Zhang, Wei, Wang, Fei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 01.11.2022
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!