Sub-pixel target fine spatial feature extraction method based on aperture coding and micro-scanning imaging mechanism

The small imaging size of targets over long distances results in the loss of geometry and spatial features. Current methods are subject to sampling limitations and cannot accurately capture the spatial features of sub-pixel targets. This paper proposes a method to accurately locate and extract the f...

Full description

Saved in:
Bibliographic Details
Published in:Optics express Vol. 32; no. 10; p. 16761
Main Authors: Zhang, Chao, yuan, Ying, Wang, Xiaorui, Ning, Yang, Li, Yue, Li, Yangyang
Format: Journal Article
Language:English
Published: United States 06.05.2024
ISSN:1094-4087, 1094-4087
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The small imaging size of targets over long distances results in the loss of geometry and spatial features. Current methods are subject to sampling limitations and cannot accurately capture the spatial features of sub-pixel targets. This paper proposes a method to accurately locate and extract the fine spatial features of sub-pixel targets through aperture coding and micro-scanning imaging. First, the formation mechanism of imaging features for sub-pixel targets is analyzed. Second, the optical aperture is anisotropically coded in different directions to modulate the spreading spots of the target. The primary spreading direction and the center of the anisotropic spreading spots are extracted. The contour and the location of the target are determined from the spreading length and the intersections of the primary spreading directions. Then, the target is sampled by different detector units through various micro-scanning offsets. The pixel units containing different sub-pixel components of the target after offset are determined based on the location results. The fine spatial distribution of the sub-pixel target is reconstructed based on the intensity variations in the pixel units containing the target. Finally, the accuracy of the sub-pixel target fine spatial feature extraction method is validated. The results show a sub-pixel localization error of less than 0.02 and an effective improvement of the sub-pixel target spatial resolution. This paper provides significant potential for improving the ability to capture spatial features of targets over long distances.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.521264