On Approximate Solutions for Nonsmooth Interval-Valued Multiobjective Optimization Problems with Vanishing Constraints

The purpose of this research is to develop approximate weak and strong stationary conditions for interval-valued multiobjective optimization problems with vanishing constraints (IVMOPVC) involving nonsmooth functions. In many real-world situations, the exact values of objectives are uncertain or imp...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics (Basel) Ročník 13; číslo 22; s. 3699
Hlavní autoři: Dwivedi, Akriti, Laha, Vivek, Beldiman, Miruna-Mihaela, Halanay, Andrei-Dan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.11.2025
Témata:
ISSN:2227-7390, 2227-7390
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The purpose of this research is to develop approximate weak and strong stationary conditions for interval-valued multiobjective optimization problems with vanishing constraints (IVMOPVC) involving nonsmooth functions. In many real-world situations, the exact values of objectives are uncertain or imprecise; hence, interval-valued formulations are used to model such uncertainty more effectively. The proposed approximate weak and strong stationarity conditions provide a robust framework for deriving meaningful optimality results even when the usual constraint and data qualifications fail. We first introduce approximate variants of these qualifications and establish their relationships. Secondly, we establish some approximate KKT type necessary optimality conditions in terms of approximate weak strongly stationary points and approximate strong strongly stationary points to identify type-2 E-quasi weakly Pareto and type-1 E-quasi Pareto solutions of the IVMOPVC. Lastly, we show that the approximate weak and strong strongly stationary conditions are sufficient for optimality under some approximate convexity assumptions. All the outcomes are well illustrated by examples.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math13223699