Designing Uncorrelated Address Constrain for DNA Storage by DMVO Algorithm

At present, huge amounts of data are being produced every second, a situation that will gradually overwhelm current storage technology. DNA is a storage medium that features high storage density and long-term stability and is now considered to be a feasible storage solution. Errors are easily made d...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ACM transactions on computational biology and bioinformatics Vol. 19; no. 2; pp. 866 - 877
Main Authors: Cao, Ben, Ii, Xue, Zhang, Xiaokang, Wang, Bin, Zhang, Qiang, Wei, Xiaopeng
Format: Journal Article
Language:English
Published: United States IEEE 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1545-5963, 1557-9964, 1557-9964
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:At present, huge amounts of data are being produced every second, a situation that will gradually overwhelm current storage technology. DNA is a storage medium that features high storage density and long-term stability and is now considered to be a feasible storage solution. Errors are easily made during the sequencing and synthesis of DNA, however. In order to reduce the error rate, novel uncorrelated address constrain are reported, and a Damping Multi-Verse Optimizer (DMVO)algorithm is proposed to construct a set of DNA coding, which is used as the non-payload. The DMVO algorithm exchanges objects through black/white holes in order to achieve a stable state and adds damping factors as disturbances. Compared with previous work, the coding set obtained by the DMVO algorithm is larger in size and of higher quality. The results of this study reveal that the size of the DNA storage coding set obtained by the DMVO algorithm increased by 4-16 percent, and the variance of the melting temperature decreased by 3-18 percent.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1545-5963
1557-9964
1557-9964
DOI:10.1109/TCBB.2020.3011582