Reassembling polygons from edges

Many geometric algorithms accept as input a set of polygons specified by their sequence of vertices and give as output a set of polygons which result from some operation on the input polygons. For instance, the output may represent the contour of the union of the polygons. In many cases a plane-swee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer mathematics Jg. 26; H. 3-4; S. 207 - 217
1. Verfasser: Hartley, Richard I.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Abingdon Gordon and Breach Science Publishers 01.01.1989
Taylor and Francis
Schlagworte:
ISSN:0020-7160, 1029-0265
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many geometric algorithms accept as input a set of polygons specified by their sequence of vertices and give as output a set of polygons which result from some operation on the input polygons. For instance, the output may represent the contour of the union of the polygons. In many cases a plane-sweep algorithm is used for such a problem. Typically such an algorithm will output the edges in the order that they would be encountered by a sweep line. Thus, one is left with the problem of determining which polygon each edge belongs to and ordering the edges in their natural cyclic order around each polygon. This is the problem considered in this paper, where it will be referred to as reassembling the set of edges. Although it is relatively easy to reassemble a set of edges of polygons in a single sweep, a naive approach will use O(N) space where N is the number of edges. This paper gives a space-efficient algorithm for doing the reassembly. It involves a forward and a backward sweep over the data.
ISSN:0020-7160
1029-0265
DOI:10.1080/00207168908803695