A New Pebble Game that Characterizes Parallel Complexity Classes
A new two-person pebble game that models parallel computations is defined. This game extends the two-person pebble game defined by Dymond and Tompa [J. Comput. System Sci., 30 (1985), pp. 149-161] and is used to characterize two natural parallel complexity classes, namely LOGCFL and ${\text{AC}}^1 $...
Uloženo v:
| Vydáno v: | SIAM journal on computing Ročník 18; číslo 3; s. 533 - 549 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia, PA
Society for Industrial and Applied Mathematics
01.06.1989
|
| Témata: | |
| ISSN: | 0097-5397, 1095-7111 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A new two-person pebble game that models parallel computations is defined. This game extends the two-person pebble game defined by Dymond and Tompa [J. Comput. System Sci., 30 (1985), pp. 149-161] and is used to characterize two natural parallel complexity classes, namely LOGCFL and ${\text{AC}}^1 $. The characterizations show a fundamental way in which the computations in these two classes differ. This game model also unifies the proofs of some well-known results of complexity theory. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 0097-5397 1095-7111 |
| DOI: | 10.1137/0218036 |