A feasible trust-region algorithm for inequality constrained optimization

The paper presents an algorithm for smooth nonlinearly inequality constrained optimization problems, in which a sequence of feasible iterates is generated by a trust-region sequential quadratic programming subproblem at each iteration. Because of retaining feasibility, the objective function can be...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 173; číslo 1; s. 513 - 522
Hlavní autoři: Peng, Ye-hui, Yao, Shengbao
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY Elsevier Inc 01.02.2006
Elsevier
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The paper presents an algorithm for smooth nonlinearly inequality constrained optimization problems, in which a sequence of feasible iterates is generated by a trust-region sequential quadratic programming subproblem at each iteration. Because of retaining feasibility, the objective function can be used as a merit function and the subproblems are feasible. Under common assumptions, the algorithm is globally convergent. The numerical results show it is promising.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2005.04.080