A feasible trust-region algorithm for inequality constrained optimization
The paper presents an algorithm for smooth nonlinearly inequality constrained optimization problems, in which a sequence of feasible iterates is generated by a trust-region sequential quadratic programming subproblem at each iteration. Because of retaining feasibility, the objective function can be...
Uložené v:
| Vydané v: | Applied mathematics and computation Ročník 173; číslo 1; s. 513 - 522 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York, NY
Elsevier Inc
01.02.2006
Elsevier |
| Predmet: | |
| ISSN: | 0096-3003, 1873-5649 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The paper presents an algorithm for smooth nonlinearly inequality constrained optimization problems, in which a sequence of feasible iterates is generated by a trust-region sequential quadratic programming subproblem at each iteration. Because of retaining feasibility, the objective function can be used as a merit function and the subproblems are feasible. Under common assumptions, the algorithm is globally convergent. The numerical results show it is promising. |
|---|---|
| ISSN: | 0096-3003 1873-5649 |
| DOI: | 10.1016/j.amc.2005.04.080 |