Random iterations, fixed points and invariant CRF-horospheres in complex Banach spaces
For holomorphic noncontractive maps on (not necessarily bounded) domains in complex Banach spaces, we establish the conditions guaranteeing locally uniform convergence of random iterations and study the existence of fixed points and boundary behaviour of iterations. In particular, we show that the p...
Uložené v:
| Vydané v: | Journal of mathematical analysis and applications Ročník 295; číslo 2; s. 291 - 302 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
San Diego, CA
Elsevier Inc
15.07.2004
Elsevier |
| Predmet: | |
| ISSN: | 0022-247X, 1096-0813 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | For holomorphic noncontractive maps on (not necessarily bounded) domains in complex Banach spaces, we establish the conditions guaranteeing locally uniform convergence of random iterations and study the existence of fixed points and boundary behaviour of iterations. In particular, we show that the problem, concerning the existence of the horospheres determined by Carathéodory–Reiffen–Finsler pseudometrics defined on unbounded domains, has the solution and we prove new results of type of Julia's lemma and Wolff's theorem. |
|---|---|
| ISSN: | 0022-247X 1096-0813 |
| DOI: | 10.1016/j.jmaa.2003.10.054 |