A new superlinearly convergent algorithm of combining QP subproblem with system of linear equations for nonlinear optimization

In this paper, a class of optimization problems with nonlinear inequality constraints is discussed. Based on the ideas of sequential quadratic programming algorithm and the method of strongly sub-feasible directions, a new superlinearly convergent algorithm is proposed. The initial iteration point c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational and applied mathematics Ročník 273; s. 88 - 102
Hlavní autoři: Jian, Jin-Bao, Guo, Chuan-Hao, Tang, Chun-Ming, Bai, Yan-Qin
Médium: Journal Article
Jazyk:angličtina
Vydáno: 01.01.2015
Témata:
ISSN:0377-0427
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, a class of optimization problems with nonlinear inequality constraints is discussed. Based on the ideas of sequential quadratic programming algorithm and the method of strongly sub-feasible directions, a new superlinearly convergent algorithm is proposed. The initial iteration point can be chosen arbitrarily for the algorithm. At each iteration, the new algorithm solves one quadratic programming subproblem which is always feasible, and one or two systems of linear equations with a common coefficient matrix. Moreover, the coefficient matrix is uniformly nonsingular. After finite iterations, the iteration points can always enter the feasible set of the problem, and the search direction is obtained by solving one quadratic programming subproblem and only one system of linear equations. The new algorithm possesses global and superlinear convergence under some suitable assumptions without the strict complementarity. Finally, some numerical results are reported to show that the algorithm is promising.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0377-0427
DOI:10.1016/j.cam.2014.06.009