The k-means clustering technique: General considerations and implementation in Mathematica

Data clustering techniques are valuable tools for researchers working with large databases of multivariate data. In this tutorial, we present a simple yet powerful one: the k-means clustering technique, through three different algorithms: the Forgy/Lloyd, algorithm, the MacQueen algorithm and the Ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tutorials in quantitative methods for psychology Jg. 9; H. 1; S. 15 - 24
Hauptverfasser: Morissette, Laurence, Chartier, Sylvain
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Université d'Ottawa 01.02.2013
Schlagworte:
ISSN:1913-4126, 1913-4126
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Data clustering techniques are valuable tools for researchers working with large databases of multivariate data. In this tutorial, we present a simple yet powerful one: the k-means clustering technique, through three different algorithms: the Forgy/Lloyd, algorithm, the MacQueen algorithm and the Hartigan and Wong algorithm. We then present an implementation in Mathematica and various examples of the different options available to illustrate the application of the technique.
ISSN:1913-4126
1913-4126
DOI:10.20982/tqmp.09.1.p015