The k-means clustering technique: General considerations and implementation in Mathematica
Data clustering techniques are valuable tools for researchers working with large databases of multivariate data. In this tutorial, we present a simple yet powerful one: the k-means clustering technique, through three different algorithms: the Forgy/Lloyd, algorithm, the MacQueen algorithm and the Ha...
Gespeichert in:
| Veröffentlicht in: | Tutorials in quantitative methods for psychology Jg. 9; H. 1; S. 15 - 24 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Université d'Ottawa
01.02.2013
|
| Schlagworte: | |
| ISSN: | 1913-4126, 1913-4126 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Data clustering techniques are valuable tools for researchers working with large databases of multivariate data. In this tutorial, we present a simple yet powerful one: the k-means clustering technique, through three different algorithms: the Forgy/Lloyd, algorithm, the MacQueen algorithm and the Hartigan and Wong algorithm. We then present an implementation in Mathematica and various examples of the different options available to illustrate the application of the technique. |
|---|---|
| ISSN: | 1913-4126 1913-4126 |
| DOI: | 10.20982/tqmp.09.1.p015 |