The k-means clustering technique: General considerations and implementation in Mathematica

Data clustering techniques are valuable tools for researchers working with large databases of multivariate data. In this tutorial, we present a simple yet powerful one: the k-means clustering technique, through three different algorithms: the Forgy/Lloyd, algorithm, the MacQueen algorithm and the Ha...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Tutorials in quantitative methods for psychology Ročník 9; číslo 1; s. 15 - 24
Hlavní autori: Morissette, Laurence, Chartier, Sylvain
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Université d'Ottawa 01.02.2013
Predmet:
ISSN:1913-4126, 1913-4126
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Data clustering techniques are valuable tools for researchers working with large databases of multivariate data. In this tutorial, we present a simple yet powerful one: the k-means clustering technique, through three different algorithms: the Forgy/Lloyd, algorithm, the MacQueen algorithm and the Hartigan and Wong algorithm. We then present an implementation in Mathematica and various examples of the different options available to illustrate the application of the technique.
ISSN:1913-4126
1913-4126
DOI:10.20982/tqmp.09.1.p015