The k-means clustering technique: General considerations and implementation in Mathematica
Data clustering techniques are valuable tools for researchers working with large databases of multivariate data. In this tutorial, we present a simple yet powerful one: the k-means clustering technique, through three different algorithms: the Forgy/Lloyd, algorithm, the MacQueen algorithm and the Ha...
Uloženo v:
| Vydáno v: | Tutorials in quantitative methods for psychology Ročník 9; číslo 1; s. 15 - 24 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Université d'Ottawa
01.02.2013
|
| Témata: | |
| ISSN: | 1913-4126, 1913-4126 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Data clustering techniques are valuable tools for researchers working with large databases of multivariate data. In this tutorial, we present a simple yet powerful one: the k-means clustering technique, through three different algorithms: the Forgy/Lloyd, algorithm, the MacQueen algorithm and the Hartigan and Wong algorithm. We then present an implementation in Mathematica and various examples of the different options available to illustrate the application of the technique. |
|---|---|
| ISSN: | 1913-4126 1913-4126 |
| DOI: | 10.20982/tqmp.09.1.p015 |