Design and Development of Artificial Intelligence Knowledge Processing System for Optimizing Security of Software System
Software security vulnerabilities are significant for the software development industry. Exploration is conducted for software development industry landscape, software development eco-system landscape, and software system customer landscape. The focus is to explore the data sources that can provide...
Saved in:
| Published in: | SN computer science Vol. 4; no. 4; p. 331 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Singapore
Springer Nature Singapore
01.07.2023
Springer Nature B.V |
| Subjects: | |
| ISSN: | 2661-8907, 2662-995X, 2661-8907 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Software security vulnerabilities are significant for the software development industry. Exploration is conducted for software development industry landscape, software development eco-system landscape, and software system customer landscape. The focus is to explore the data sources that can provide the software development team with insights to act upon the security vulnerabilities proactively. Across these modules of software landscape, customer landscape, and industry landscape, data sources are leveraged using artificial intelligence approaches to identify the security insights. The focus is also on building a smart knowledge management system that integrates the information processed across modules into a central system. This central intelligence system can be further leveraged to manage software development activities proactively. In this exploration, machine learning and deep learning approaches are devised to model the data and learn from across the modules. Architecture for all the modules and their integration is also proposed. Work helps to envision a smart system for Artificial Intelligence-based knowledge management for managing software security vulnerabilities. |
|---|---|
| AbstractList | Software security vulnerabilities are significant for the software development industry. Exploration is conducted for software development industry landscape, software development eco-system landscape, and software system customer landscape. The focus is to explore the data sources that can provide the software development team with insights to act upon the security vulnerabilities proactively. Across these modules of software landscape, customer landscape, and industry landscape, data sources are leveraged using artificial intelligence approaches to identify the security insights. The focus is also on building a smart knowledge management system that integrates the information processed across modules into a central system. This central intelligence system can be further leveraged to manage software development activities proactively. In this exploration, machine learning and deep learning approaches are devised to model the data and learn from across the modules. Architecture for all the modules and their integration is also proposed. Work helps to envision a smart system for Artificial Intelligence-based knowledge management for managing software security vulnerabilities. |
| ArticleNumber | 331 |
| Author | Hewage, Chaminda Althar, Raghavendra Rao Purushotham, Sathvik Sengar, Sandeep Singh Samanta, Debabrata |
| Author_xml | – sequence: 1 givenname: Raghavendra Rao surname: Althar fullname: Althar, Raghavendra Rao organization: CHRIST (Deemed to be) University, First American India Private Limited – sequence: 2 givenname: Debabrata surname: Samanta fullname: Samanta, Debabrata organization: CHRIST (Deemed to be) University, Department of Computational Information Technology, Rochester Institute of Technology-RIT Global – sequence: 3 givenname: Sathvik surname: Purushotham fullname: Purushotham, Sathvik organization: Department of Information Science, BMS Institute of Technology and Management – sequence: 4 givenname: Sandeep Singh orcidid: 0000-0003-2171-9332 surname: Sengar fullname: Sengar, Sandeep Singh email: SSSengar@cardiffmet.ac.uk organization: Department of Computer Science, Cardiff Metropolitan University – sequence: 5 givenname: Chaminda surname: Hewage fullname: Hewage, Chaminda organization: Department of Computer Science, Cardiff Metropolitan University |
| BookMark | eNp9kEtLAzEUhYNUsFb_gKuA69Ek88osS-ujWKigrkMmczOkTJOapGr99Y6toLjo6l4O57vnck7RwDoLCF1QckUJKa9DxqqySghLE0JLnifsCA1ZUdCEV6Qc_NlP0HkIS0IIy0mWFfkQfUwhmNZiaRs8hTfo3HoFNmKn8dhHo40yssMzG6HrTAtWAX6w7r2DpgX86J2CEIxt8dM2RFhh7TxerKNZmc-dCmrjTdx-n3tyOr5LDz_WM3SsZRfg_GeO0MvtzfPkPpkv7maT8TxRrOQsqaD_W-WaK56xvMlUXdepTJmkjMhKpinQTGe85lQrSgrgTd1LJal4XbBMN-kIXe7vrr173UCIYuk23vaRglWMspwXJO9dbO9S3oXgQYu1Nyvpt4IS8V2y2Jcs-pLFrmTBeoj_g5SJMhpno5emO4ymezT0ObYF__vVAeoLXuWUqw |
| CitedBy_id | crossref_primary_10_1002_smr_70055 crossref_primary_10_1007_s11277_024_11015_4 crossref_primary_10_1109_JIOT_2025_3571532 |
| Cites_doi | 10.1007/s10664-011-9190-8 10.1007/978-3-319-23318-5_6 10.1109/JIOT.2020.2997651 10.1109/ACCESS.2021.3052311 10.1109/TSE.2019.2892959 10.1155/2021/8522839 10.1145/2914770.2837617 10.1109/TSE.2007.256941 10.1007/s10664-014-9300-5 10.1515/9783110703399 10.1007/s11334-020-00383-2 10.1016/S0950-5849(96)00006-7 10.1016/j.jss.2006.07.009 10.1007/978-3-319-25159-2_49 10.1145/2420950.2421003 10.1109/ACCESS.2021.3062388 10.1155/2020/8830683 10.1109/ACCESS.2020.3034766 10.1007/978-1-4419-6045-0_9 10.1109/ESCI48226.2020.9167512 10.1007/978-3-319-07821-2_13 10.1109/ACCESS.2020.3041181 10.1109/ACCESS.2020.2971000 10.1007/978-3-642-20573-6_21 10.1007/s41019-016-0019-8 10.1109/ICSE.2017.13 10.1109/SPIN.2015.7095310 10.1109/TSE.2014.2321179 10.1109/ACCESS.2020.3040220 10.1109/ACCESS.2021.3057044 10.1109/TSE.2018.2881961 10.1142/S0218001414500013 10.1145/2635868.2635880 10.1145/2837614.2837617 10.1007/s11334-020-00364-5 10.1145/1988630.1988632 10.1016/j.infsof.2011.09.002 |
| ContentType | Journal Article |
| Copyright | Crown 2023 Crown 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Crown 2023 – notice: Crown 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s42979-023-01785-2 |
| DatabaseName | Springer Nature Link CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2661-8907 |
| ExternalDocumentID | 10_1007_s42979_023_01785_2 |
| GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABECU ABHQN ABJNI ABMQK ABTEG ABTKH ABWNU ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AFBBN AFKRA AFQWF AGMZJ AGQEE AGRTI AIGIU AILAN AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ARAPS BAPOH BENPR BGLVJ C6C CCPQU DPUIP EBLON EBS FIGPU FNLPD GGCAI GNWQR HCIFZ IKXTQ IWAJR JZLTJ K7- LLZTM NPVJJ NQJWS OK1 PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR 2JN AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION KOV PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c2782-9e890c5f8c8425d4cbbb3a32a120a9a33e14f48b81fc106e8db3e17098b624fd3 |
| IEDL.DBID | RSV |
| ISSN | 2661-8907 2662-995X |
| IngestDate | Wed Nov 05 14:48:05 EST 2025 Sat Nov 29 05:16:53 EST 2025 Tue Nov 18 20:51:06 EST 2025 Fri Feb 21 02:43:28 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Software vulnerability Software development Bi-directional encoder representation for transformers Software security Knowledge processing |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2782-9e890c5f8c8425d4cbbb3a32a120a9a33e14f48b81fc106e8db3e17098b624fd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2171-9332 |
| OpenAccessLink | https://link.springer.com/10.1007/s42979-023-01785-2 |
| PQID | 2921258605 |
| PQPubID | 6623307 |
| ParticipantIDs | proquest_journals_2921258605 crossref_primary_10_1007_s42979_023_01785_2 crossref_citationtrail_10_1007_s42979_023_01785_2 springer_journals_10_1007_s42979_023_01785_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-01 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Kolkata |
| PublicationTitle | SN computer science |
| PublicationTitleAbbrev | SN COMPUT. SCI |
| PublicationYear | 2023 |
| Publisher | Springer Nature Singapore Springer Nature B.V |
| Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V |
| References | MisirliATBenerABBayesian networks for evidence-based decision-making in software engineeringIEEE Trans Softw Eng201440653355410.1109/TSE.2014.2321179 FoggiaPPercannellaGVentoMGraph matching and learning in pattern recognition in the last 10 yearsInt J Pattern Recognit Artif Intell201428011450001319001010.1142/S0218001414500013 MedeirosNIvakiNCostaPVieiraMVulnerable code detection using software metrics and machine learningIEEE Access2020821917421919810.1109/ACCESS.2020.3041181 Ben OthmaneLChehraziGBoddenETsalovskiPBruckerADTime for addressing software security issues: prediction models and impacting factorsData Sci Eng20172210712410.1007/s41019-016-0019-8 Mining graph patterns. Frequent pattern mining. 2014. p. 307–338. WenJLiSLinZHuYHuangCSystematic literature review of machine learning based software development effort estimation modelsInf Softw Technol2012541415910.1016/j.infsof.2011.09.002 Chapter 16: lessons learned from software analytics in practice—the art and science of analyzing software data [Book] Yamaguchi F, Lottmann M, Rieck K. Generalized vulnerability extrapolation using abstract syntax trees. in: proceedings of the 28th annual computer security applications conference, Orlando. 2012. p. 359–368. Mishra MK, Sengar SS, Mukhopadhyay S. Algorithm for secure visual communication In: 2015 2nd international conference on signal processing and integrated networks. IEEE; 2015. p. 831–836. ZengPLinGPanLTaiYZhangJSoftware vulnerability analysis and discovery using deep learning techniques: a surveyIEEE Access2020819715819717210.1109/ACCESS.2020.3034766 SengarSSKumarSRainaPMahaliyanMBot detection in social networks based on multilayered deep learning approachSens Transducers202024453743 Othmane L, Chehrazi G, Bodden E, Tsalovski P, Brucker AD, Miseldine P. Factors impacting the effort required to fix security vulnerabilities. In: Proceedings of the 18th international conference on information security, vol 9290, Trondheim. 2015. p. 102–119. NinaHPow-SangJAVillavicencioMSystematic mapping of the literature on secure software developmentIEEE Access20219368523686710.1109/ACCESS.2021.3062388 Aggarwal CC, Wang H. A Survey of clustering algorithms for graph data. In: Aggarwal CC, Wang H, editors. Managing and mining graph data. Boston: Springer US; 2010. p. 275–301. LongFRinardMAutomatic patch generation by learning correct codeSIGPLAN Not201651129831210.1145/2914770.2837617 AltharRRSamantaDThe realist approach for evaluation of computational intelligence in software engineeringInnov Syst Softw Eng2021171172710.1007/s11334-020-00383-2 AhmadAA systematic literature review on using machine learning algorithms for software requirements identification on stack overflowSecur Commun Netw2020202010.1155/2020/8830683 Hamill M, Goseva-Popstojanova K. Software faults fixing effort, NASA Goddard Space Flight Center, Greenbelt, 2014. MoyoSMnkandlaEA novel lightweight solo software development methodology with optimum security practicesIEEE Access20208337353374710.1109/ACCESS.2020.2971000 KocaguneliEMenziesTMendesETransfer learning in effort estimationEmpir Softw Eng201520381384310.1007/s10664-014-9300-5 Al-MatouqHMahmoodSAlshayebMNiaziMA maturity model for secure software design: a multivocal studyIEEE Access2020821575821577610.1109/ACCESS.2020.3040220 Althar RR, Samanta D, Kaur M, Alnuaim AA, Aljaffan N, Aman Ullah M. Software systems security vulnerabilities management by exploring the capabilities of language models using NLP. Comput Intell Neurosci. 2021:e8522839. Given-WilsonTJafriNLegayACombined software and hardware fault injection vulnerability detectionInnov Syst Softw Eng202016210112010.1007/s11334-020-00364-5 Peng H, Mou L, Li G, Liu Y, Zhang L, Jin Z. Building program vector representations for deep learning. In: Proceedings of the 8th international conference on knowledge science, engineering and management, vol 9403, Chongqing, China. 2015. p. 547–553. Shin Y, Williams, L. An initial study on the use of execution complexity metrics as indicators of software vulnerabilities. In: Proceeding of the 7th international workshop on Software engineering for secure systems-SESS ’11. 2011. GhaffarianSMShahriariHRSoftware vulnerability analysis and discovery using machine-learning and data-mining techniques: a surveyACM Comput Surv2017504 DamHKTranTPhamTNgSWGrundyJGhoseAAutomatic feature learning for predicting vulnerable software componentsIEEE Trans Softw Eng2021471678510.1109/TSE.2018.2881961 ShinYWilliamsLCan traditional fault prediction models be used for vulnerability prediction?Empir Softw Eng2013181255910.1007/s10664-011-9190-8 GrayARMacDonellSGA comparison of techniques for developing predictive models of software metricsInf Softw Technol199739642543710.1016/S0950-5849(96)00006-7 BreretonPKitchenhamBABudgenDTurnerMKhalilMLessons from applying the systematic literature review process within the software engineering domainJ Syst Softw200780457158310.1016/j.jss.2006.07.009 Rodeghero P, Jiang S, Armaly A, McMillan C. Detecting user story information in developer-client conversations to generate extractive summaries. In: 2017 IEEE/ACM 39th international conference on software engineering (ICSE). 2017. p. 49–59. A survey of clustering algorithms for graph data, Managing and mining graph data. 2010. p. 275–301. Sengar SS, Hariharan U, Rajkumar K. Multimodal biometric authentication system using deep learning method. In: 2020 international conference on emerging smart computing and informatics (ESCI). IEEE. 2020. p. 309–312. Wallace D. Software requirements analysis as fault predictor. 2003. Mezouar ME, Zhang F, Zou Y. Local versus global models for effort-aware defect prediction. In: Proceedings of the 26th annual international conference on computer science and software engineering, Toronto, 2016. p. 178–187. QuYUsing K-core decomposition on class dependency networks to improve bug prediction model’s practical performanceIEEE Trans Softw Eng2021472348366420779310.1109/TSE.2019.2892959 ben Othmane L, Chehrazi G, Bodden E, Tsalovski P. Brucker AD, Miseldine P. Factors impacting the effort required to fix security vulnerabilities. Inf Secur. 2015:102–119. Bosu A, Carver JC, Hafiz M, Hilley P , Janni D. Identifying the characteristics of vulnerable code changes: an empirical study. In: Proceedings of the 22nd ACM SIGSOFT international symposium on foundations of software engineering, Hong Kong, China. 2014. p. 257–268. Ö. SönmezFKiliçBGHolistic web application security visualization for multi-project and multi-phase dynamic application security test resultsIEEE Access20219258582588410.1109/ACCESS.2021.3057044 Singh AP, Kumar V, Sengar SS, Wairiya M. Detection and prevention of phishing attack using dynamic watermarking. In: International conference on advances in information technology and mobile communication. Berlin: Springer; 2011. p. 132-137. IqbalWAbbasHDaneshmandMRaufBBangashYAAn in-depth analysis of iot security requirements, challenges, and their countermeasures via software-defined securityIEEE Internet Things J2020710102501027610.1109/JIOT.2020.2997651 MenziesTGreenwaldJFrankAData mining static code attributes to learn defect predictorsIEEE Trans Softw Eng200733121310.1109/TSE.2007.256941 Rao Althar R, Samanta D, Konar D, Bhattacharyya S. Software source code: statistical modeling. De Gruyter; 2021. Long F, Rinard M. Automatic patch generation by learning correct code. In: Proceedings of the 43rd annual ACM SIGPLAN-SIGACT symposium on principles of programming languages, St. Petersburg. 2016. p. 298–312. KhanRAKhanSUKhanHUIlyasMSystematic mapping study on security approaches in secure software engineeringIEEE Access20219191391916010.1109/ACCESS.2021.3052311 T Given-Wilson (1785_CR8) 2020; 16 L Ben Othmane (1785_CR3) 2017; 2 F Ö. Sönmez (1785_CR33) 2021; 9 AR Gray (1785_CR6) 1997; 39 P Foggia (1785_CR21) 2014; 28 1785_CR14 1785_CR15 1785_CR12 1785_CR13 H Nina (1785_CR34) 2021; 9 1785_CR18 1785_CR19 1785_CR16 1785_CR38 1785_CR39 Y Qu (1785_CR36) 2021; 47 SM Ghaffarian (1785_CR10) 2017; 50 SS Sengar (1785_CR30) 2020; 244 W Iqbal (1785_CR29) 2020; 7 F Long (1785_CR45) 2016; 51 RR Althar (1785_CR2) 2021; 17 P Zeng (1785_CR43) 2020; 8 1785_CR22 T Menzies (1785_CR41) 2007; 33 1785_CR44 P Brereton (1785_CR17) 2007; 80 1785_CR20 1785_CR25 1785_CR26 H Al-Matouq (1785_CR32) 2020; 8 1785_CR23 1785_CR24 S Moyo (1785_CR31) 2020; 8 A Ahmad (1785_CR40) 2020; 2020 1785_CR1 N Medeiros (1785_CR35) 2020; 8 AT Misirli (1785_CR42) 2014; 40 1785_CR28 J Wen (1785_CR7) 2012; 54 Y Shin (1785_CR11) 2013; 18 E Kocaguneli (1785_CR9) 2015; 20 1785_CR5 RA Khan (1785_CR27) 2021; 9 HK Dam (1785_CR37) 2021; 47 1785_CR4 |
| References_xml | – reference: ben Othmane L, Chehrazi G, Bodden E, Tsalovski P. Brucker AD, Miseldine P. Factors impacting the effort required to fix security vulnerabilities. Inf Secur. 2015:102–119. – reference: LongFRinardMAutomatic patch generation by learning correct codeSIGPLAN Not201651129831210.1145/2914770.2837617 – reference: Aggarwal CC, Wang H. A Survey of clustering algorithms for graph data. In: Aggarwal CC, Wang H, editors. Managing and mining graph data. Boston: Springer US; 2010. p. 275–301. – reference: KhanRAKhanSUKhanHUIlyasMSystematic mapping study on security approaches in secure software engineeringIEEE Access20219191391916010.1109/ACCESS.2021.3052311 – reference: Althar RR, Samanta D, Kaur M, Alnuaim AA, Aljaffan N, Aman Ullah M. Software systems security vulnerabilities management by exploring the capabilities of language models using NLP. Comput Intell Neurosci. 2021:e8522839. – reference: Yamaguchi F, Lottmann M, Rieck K. Generalized vulnerability extrapolation using abstract syntax trees. in: proceedings of the 28th annual computer security applications conference, Orlando. 2012. p. 359–368. – reference: Al-MatouqHMahmoodSAlshayebMNiaziMA maturity model for secure software design: a multivocal studyIEEE Access2020821575821577610.1109/ACCESS.2020.3040220 – reference: AhmadAA systematic literature review on using machine learning algorithms for software requirements identification on stack overflowSecur Commun Netw2020202010.1155/2020/8830683 – reference: Mishra MK, Sengar SS, Mukhopadhyay S. Algorithm for secure visual communication In: 2015 2nd international conference on signal processing and integrated networks. IEEE; 2015. p. 831–836. – reference: ShinYWilliamsLCan traditional fault prediction models be used for vulnerability prediction?Empir Softw Eng2013181255910.1007/s10664-011-9190-8 – reference: MisirliATBenerABBayesian networks for evidence-based decision-making in software engineeringIEEE Trans Softw Eng201440653355410.1109/TSE.2014.2321179 – reference: Shin Y, Williams, L. An initial study on the use of execution complexity metrics as indicators of software vulnerabilities. In: Proceeding of the 7th international workshop on Software engineering for secure systems-SESS ’11. 2011. – reference: AltharRRSamantaDThe realist approach for evaluation of computational intelligence in software engineeringInnov Syst Softw Eng2021171172710.1007/s11334-020-00383-2 – reference: Singh AP, Kumar V, Sengar SS, Wairiya M. Detection and prevention of phishing attack using dynamic watermarking. In: International conference on advances in information technology and mobile communication. Berlin: Springer; 2011. p. 132-137. – reference: DamHKTranTPhamTNgSWGrundyJGhoseAAutomatic feature learning for predicting vulnerable software componentsIEEE Trans Softw Eng2021471678510.1109/TSE.2018.2881961 – reference: Rao Althar R, Samanta D, Konar D, Bhattacharyya S. Software source code: statistical modeling. De Gruyter; 2021. – reference: Ben OthmaneLChehraziGBoddenETsalovskiPBruckerADTime for addressing software security issues: prediction models and impacting factorsData Sci Eng20172210712410.1007/s41019-016-0019-8 – reference: Chapter 16: lessons learned from software analytics in practice—the art and science of analyzing software data [Book] – reference: FoggiaPPercannellaGVentoMGraph matching and learning in pattern recognition in the last 10 yearsInt J Pattern Recognit Artif Intell201428011450001319001010.1142/S0218001414500013 – reference: Peng H, Mou L, Li G, Liu Y, Zhang L, Jin Z. Building program vector representations for deep learning. In: Proceedings of the 8th international conference on knowledge science, engineering and management, vol 9403, Chongqing, China. 2015. p. 547–553. – reference: Wallace D. Software requirements analysis as fault predictor. 2003. – reference: Bosu A, Carver JC, Hafiz M, Hilley P , Janni D. Identifying the characteristics of vulnerable code changes: an empirical study. In: Proceedings of the 22nd ACM SIGSOFT international symposium on foundations of software engineering, Hong Kong, China. 2014. p. 257–268. – reference: Sengar SS, Hariharan U, Rajkumar K. Multimodal biometric authentication system using deep learning method. In: 2020 international conference on emerging smart computing and informatics (ESCI). IEEE. 2020. p. 309–312. – reference: MenziesTGreenwaldJFrankAData mining static code attributes to learn defect predictorsIEEE Trans Softw Eng200733121310.1109/TSE.2007.256941 – reference: WenJLiSLinZHuYHuangCSystematic literature review of machine learning based software development effort estimation modelsInf Softw Technol2012541415910.1016/j.infsof.2011.09.002 – reference: Ö. SönmezFKiliçBGHolistic web application security visualization for multi-project and multi-phase dynamic application security test resultsIEEE Access20219258582588410.1109/ACCESS.2021.3057044 – reference: Hamill M, Goseva-Popstojanova K. Software faults fixing effort, NASA Goddard Space Flight Center, Greenbelt, 2014. – reference: Mezouar ME, Zhang F, Zou Y. Local versus global models for effort-aware defect prediction. In: Proceedings of the 26th annual international conference on computer science and software engineering, Toronto, 2016. p. 178–187. – reference: ZengPLinGPanLTaiYZhangJSoftware vulnerability analysis and discovery using deep learning techniques: a surveyIEEE Access2020819715819717210.1109/ACCESS.2020.3034766 – reference: Othmane L, Chehrazi G, Bodden E, Tsalovski P, Brucker AD, Miseldine P. Factors impacting the effort required to fix security vulnerabilities. In: Proceedings of the 18th international conference on information security, vol 9290, Trondheim. 2015. p. 102–119. – reference: KocaguneliEMenziesTMendesETransfer learning in effort estimationEmpir Softw Eng201520381384310.1007/s10664-014-9300-5 – reference: Given-WilsonTJafriNLegayACombined software and hardware fault injection vulnerability detectionInnov Syst Softw Eng202016210112010.1007/s11334-020-00364-5 – reference: QuYUsing K-core decomposition on class dependency networks to improve bug prediction model’s practical performanceIEEE Trans Softw Eng2021472348366420779310.1109/TSE.2019.2892959 – reference: Long F, Rinard M. Automatic patch generation by learning correct code. In: Proceedings of the 43rd annual ACM SIGPLAN-SIGACT symposium on principles of programming languages, St. Petersburg. 2016. p. 298–312. – reference: SengarSSKumarSRainaPMahaliyanMBot detection in social networks based on multilayered deep learning approachSens Transducers202024453743 – reference: NinaHPow-SangJAVillavicencioMSystematic mapping of the literature on secure software developmentIEEE Access20219368523686710.1109/ACCESS.2021.3062388 – reference: GhaffarianSMShahriariHRSoftware vulnerability analysis and discovery using machine-learning and data-mining techniques: a surveyACM Comput Surv2017504 – reference: GrayARMacDonellSGA comparison of techniques for developing predictive models of software metricsInf Softw Technol199739642543710.1016/S0950-5849(96)00006-7 – reference: MedeirosNIvakiNCostaPVieiraMVulnerable code detection using software metrics and machine learningIEEE Access2020821917421919810.1109/ACCESS.2020.3041181 – reference: A survey of clustering algorithms for graph data, Managing and mining graph data. 2010. p. 275–301. – reference: Rodeghero P, Jiang S, Armaly A, McMillan C. Detecting user story information in developer-client conversations to generate extractive summaries. In: 2017 IEEE/ACM 39th international conference on software engineering (ICSE). 2017. p. 49–59. – reference: IqbalWAbbasHDaneshmandMRaufBBangashYAAn in-depth analysis of iot security requirements, challenges, and their countermeasures via software-defined securityIEEE Internet Things J2020710102501027610.1109/JIOT.2020.2997651 – reference: MoyoSMnkandlaEA novel lightweight solo software development methodology with optimum security practicesIEEE Access20208337353374710.1109/ACCESS.2020.2971000 – reference: BreretonPKitchenhamBABudgenDTurnerMKhalilMLessons from applying the systematic literature review process within the software engineering domainJ Syst Softw200780457158310.1016/j.jss.2006.07.009 – reference: Mining graph patterns. Frequent pattern mining. 2014. p. 307–338. – volume: 18 start-page: 25 issue: 1 year: 2013 ident: 1785_CR11 publication-title: Empir Softw Eng doi: 10.1007/s10664-011-9190-8 – ident: 1785_CR13 doi: 10.1007/978-3-319-23318-5_6 – volume: 7 start-page: 10250 issue: 10 year: 2020 ident: 1785_CR29 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2020.2997651 – ident: 1785_CR18 doi: 10.1007/978-3-319-23318-5_6 – volume: 9 start-page: 19139 year: 2021 ident: 1785_CR27 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3052311 – volume: 47 start-page: 348 issue: 2 year: 2021 ident: 1785_CR36 publication-title: IEEE Trans Softw Eng doi: 10.1109/TSE.2019.2892959 – ident: 1785_CR38 doi: 10.1155/2021/8522839 – volume: 51 start-page: 298 issue: 1 year: 2016 ident: 1785_CR45 publication-title: SIGPLAN Not doi: 10.1145/2914770.2837617 – ident: 1785_CR15 – volume: 33 start-page: 2 issue: 1 year: 2007 ident: 1785_CR41 publication-title: IEEE Trans Softw Eng doi: 10.1109/TSE.2007.256941 – volume: 50 start-page: 4 year: 2017 ident: 1785_CR10 publication-title: ACM Comput Surv – volume: 20 start-page: 813 issue: 3 year: 2015 ident: 1785_CR9 publication-title: Empir Softw Eng doi: 10.1007/s10664-014-9300-5 – ident: 1785_CR1 doi: 10.1515/9783110703399 – volume: 17 start-page: 17 issue: 1 year: 2021 ident: 1785_CR2 publication-title: Innov Syst Softw Eng doi: 10.1007/s11334-020-00383-2 – volume: 39 start-page: 425 issue: 6 year: 1997 ident: 1785_CR6 publication-title: Inf Softw Technol doi: 10.1016/S0950-5849(96)00006-7 – volume: 80 start-page: 571 issue: 4 year: 2007 ident: 1785_CR17 publication-title: J Syst Softw doi: 10.1016/j.jss.2006.07.009 – ident: 1785_CR26 doi: 10.1007/978-3-319-25159-2_49 – ident: 1785_CR25 doi: 10.1145/2420950.2421003 – volume: 9 start-page: 36852 year: 2021 ident: 1785_CR34 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3062388 – volume: 2020 year: 2020 ident: 1785_CR40 publication-title: Secur Commun Netw doi: 10.1155/2020/8830683 – volume: 8 start-page: 197158 year: 2020 ident: 1785_CR43 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3034766 – ident: 1785_CR20 doi: 10.1007/978-1-4419-6045-0_9 – ident: 1785_CR28 doi: 10.1109/ESCI48226.2020.9167512 – ident: 1785_CR22 doi: 10.1007/978-3-319-07821-2_13 – volume: 8 start-page: 219174 year: 2020 ident: 1785_CR35 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3041181 – ident: 1785_CR12 – volume: 8 start-page: 33735 year: 2020 ident: 1785_CR31 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2971000 – ident: 1785_CR4 doi: 10.1007/978-3-642-20573-6_21 – ident: 1785_CR16 – volume: 2 start-page: 107 issue: 2 year: 2017 ident: 1785_CR3 publication-title: Data Sci Eng doi: 10.1007/s41019-016-0019-8 – ident: 1785_CR14 – ident: 1785_CR39 doi: 10.1109/ICSE.2017.13 – ident: 1785_CR5 doi: 10.1109/SPIN.2015.7095310 – volume: 244 start-page: 37 issue: 5 year: 2020 ident: 1785_CR30 publication-title: Sens Transducers – volume: 40 start-page: 533 issue: 6 year: 2014 ident: 1785_CR42 publication-title: IEEE Trans Softw Eng doi: 10.1109/TSE.2014.2321179 – volume: 8 start-page: 215758 year: 2020 ident: 1785_CR32 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3040220 – volume: 9 start-page: 25858 year: 2021 ident: 1785_CR33 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3057044 – volume: 47 start-page: 67 issue: 1 year: 2021 ident: 1785_CR37 publication-title: IEEE Trans Softw Eng doi: 10.1109/TSE.2018.2881961 – volume: 28 start-page: 1450001 issue: 01 year: 2014 ident: 1785_CR21 publication-title: Int J Pattern Recognit Artif Intell doi: 10.1142/S0218001414500013 – ident: 1785_CR19 doi: 10.1145/2635868.2635880 – ident: 1785_CR23 doi: 10.1007/978-1-4419-6045-0_9 – ident: 1785_CR24 doi: 10.1145/2837614.2837617 – volume: 16 start-page: 101 issue: 2 year: 2020 ident: 1785_CR8 publication-title: Innov Syst Softw Eng doi: 10.1007/s11334-020-00364-5 – ident: 1785_CR44 doi: 10.1145/1988630.1988632 – volume: 54 start-page: 41 issue: 1 year: 2012 ident: 1785_CR7 publication-title: Inf Softw Technol doi: 10.1016/j.infsof.2011.09.002 |
| SSID | ssj0002504465 |
| Score | 2.341957 |
| Snippet | Software security vulnerabilities are significant for the software development industry. Exploration is conducted for software development industry landscape,... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 331 |
| SubjectTerms | Artificial intelligence Computer Imaging Computer Science Computer Systems Organization and Communication Networks Customers Cyber Security and Privacy in Communication Networks Cybersecurity Data science Data sources Data Structures and Information Theory Deep learning Industrial development Information Systems and Communication Service Knowledge management Literature reviews Machine learning Modules Original Research Pattern Recognition and Graphics Security Software Software development Software Engineering/Programming and Operating Systems Teams Vision |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aPXjxgYrVKjl40-Am2e0mJxG1KJUq-KC3Ja-Fgm5rWx_4602y2bYK9uI1mx0CMzszO5n5PgAOqREpwwYjQ7VEsY4MYkpRpJPUENpUKvbwxU83aafDul1-Fwpuo9BWWflE76h1X7ka-Qnh1skmzGbfp4NX5Fij3O1qoNBYBEuYEOzsvJ2iSY3FwXPFnk3ShiGCOE-6YW7GT89ZV5xyZIMW8hz1iPyMTdOE89cdqQ89rbX_HnodrIakE56VVrIBFkyxCT4vfPMGFIWGM61DsJ_7jSWyBLyegeyE7aoAB8N8gT0uLDHPoU1-4a31Py-9L78aePGcuHvr6j_E0IStW-CxdflwfoUCDwNSxCYQiBvGI5XkTLk7Ox0rKSUVlAhMIsEFpQbHecwkw7myf5iGaWmX0ogz2SRxruk2qBX9wuwAaE2gKamSfiZXUiwY4UbzPBGER4lmdYArDWQqgJQ7roznbAKv7LWWWa1lXmsZqYOjyTuDEqJj7u5GpaosfK6jbKqnOjiulD19_Le03fnS9sAK8fbl2nsboDYevpl9sKzex73R8MAb6zfk4--2 priority: 102 providerName: ProQuest |
| Title | Design and Development of Artificial Intelligence Knowledge Processing System for Optimizing Security of Software System |
| URI | https://link.springer.com/article/10.1007/s42979-023-01785-2 https://www.proquest.com/docview/2921258605 |
| Volume | 4 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2661-8907 dateEnd: 20241208 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: P5Z dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2661-8907 dateEnd: 20241208 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: K7- dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2661-8907 dateEnd: 20241208 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: RSV dateStart: 20190101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: RSV dateStart: 20200101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFH64Hby4i3UpOXjTQCeZ6SRHt6IotbghXoZsAwVtpa0L_nrfpJlWRQW9zCGTF0Je3pLkve8BbHOnUhG5iDpuNY1tzVFhDKc2SR3jdWNiD198c5Y2m-L2VrZCUli_jHYvnyS9ph4lu6HmTCVFG0N9SXmKincazZ0oxPHi8mZ0s1KAcsX1JGTIfE_62QqNXcsvr6HeyDTm_ze9BZgLTiXZG-6CRZhwnSWYLws2kCC_y_B66OM1iOpY8iFaiHRzTzsEkyAnH1A6yWl550ZCSgHOiQxhzgn6u-QcVc5D-823hlJ4xXCXqN1fVM-Fritw3Ti6OjimofQCNQx9BiqdkDWT5MIUz3Q2NlprrjhTEaspqTh3UZzHQosoN3iodMJqbEqRG7rO4tzyVZjqdDtuDQhyva650T4NV_NICSadlXmimKwlVlQgKlmRmYBLXpTHuM9GiMp-aTNc2swvbcYqsDOieRyicvzae7PkcBYktJ8xiUY7EXiaq8BuydHx759HW_9b9w2YZX5TFBG-mzA16D25LZgxz4N2v1eF6f2jZuuiCpOnKcVvK7mr-t38Dh7t7dw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dTxQxEJ8AmuALatRwCNoHeNLG3bZ72z4QQkTC5c6DRDQXX9Z-bUIid3jH9x_l3-i0u3uHJPDGA6_d7my2_XVm2s78BmCde53L1KfUc2eocImn0lpOXZZ7xtvWikhf_KOX9_tyMFAHc_C3yYUJYZWNToyK2o1sOCP_xBQq2Uyi97118oeGqlHhdrUpoVHBouuvLnDLNtns7OD8bjC2--Xw8x6tqwpQy9AcUuWlSmxWShtuoJywxhiuOdMpS7TSnPtUlEIamZYW90teOoNNeaKkaTNROo5y5-GJELhZwvVzkP2cnukEOjARq1ei2cMvqWxQ5-nEbD1U_bmiaCRx_57LjLL_beHMwb11JxtN3e7zxzZIL2CpdqrJdrUKXsKcH76Cy50YnEL00JEboVFkVMaOFXMG6dygJCXd5oCR1PkTODyk4nQn6NyTfdSvx0fXsbWu-xfEfUNTdqHHvu76Gr4_yM--gYXhaOiXgSDE24ZbE3OODU-1ZMo7VWaaqSRzsgVpM-OFrUnYQy2Q38WUPjqipECUFBElBWvBh-k7JxUFyb29VxtoFLU6mhQzXLTgYwOu2eO7pa3cL-09LO4dfu0VvU6_-xaesYjtEMq8Cgun4zO_Bk_t-enRZPwuLhQCvx4adP8AMPtMgQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SRbxYn1itmoM3Dd1NdrvJUazFYqmFaultyWuhoNvS1gf-erPZbFtFBfGaZEJIJvNIZr4B4IxoHlFf-0gTJVCgPI2olASpMNKY1KUMLHxxvx11OnQwYN2lLH4b7V58SeY5DRlKUzqrjVVSmye-GSkaMWT0DbLl5ZERwqtBVjQo89d7_fkrSwbQFdRDly3zPelnjbQwM7_8jFqF0yz_f6lbYNMZm_Ay545tsKLTHVAuCjlAd693wVvDxnFAniq4FEUER4mlzUEmYGsJvRPeFm9x0KUamPXBHP4cGjsY3hlR9DR8t62uRF42Xc9I_Vc-0W7oHnhoXt9f3SBXkgFJbGwJxDRlngwTKrPvOxVIIQThBHMfe5xxQrQfJAEV1E-kcTY1VcI0RR6joo6DRJF9UEpHqT4A0HBDXRApbHquID6nmGnFkpBj5oWKVoBfHEssHV55VjbjMZ4jLdutjc3WxnZrY1wB53OacY7W8evoanHasbu50xgzo8xDary8CrgoTnfR_fNsh38bfgrWu41m3G51bo_ABrb8kQUBV0FpNnnWx2BNvsyG08mJZegPUb_2Og |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+Development+of+Artificial+Intelligence+Knowledge+Processing+System+for+Optimizing+Security+of+Software+System&rft.jtitle=SN+computer+science&rft.au=Althar%2C+Raghavendra+Rao&rft.au=Samanta%2C+Debabrata&rft.au=Purushotham%2C+Sathvik&rft.au=Sengar%2C+Sandeep+Singh&rft.date=2023-07-01&rft.pub=Springer+Nature+Singapore&rft.eissn=2661-8907&rft.volume=4&rft.issue=4&rft_id=info:doi/10.1007%2Fs42979-023-01785-2&rft.externalDocID=10_1007_s42979_023_01785_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon |