Design and Development of Artificial Intelligence Knowledge Processing System for Optimizing Security of Software System

Software security vulnerabilities are significant for the software development industry. Exploration is conducted for software development industry landscape, software development eco-system landscape, and software system customer landscape. The focus is to explore the data sources that can provide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SN computer science Jg. 4; H. 4; S. 331
Hauptverfasser: Althar, Raghavendra Rao, Samanta, Debabrata, Purushotham, Sathvik, Sengar, Sandeep Singh, Hewage, Chaminda
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Singapore Springer Nature Singapore 01.07.2023
Springer Nature B.V
Schlagworte:
ISSN:2661-8907, 2662-995X, 2661-8907
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Software security vulnerabilities are significant for the software development industry. Exploration is conducted for software development industry landscape, software development eco-system landscape, and software system customer landscape. The focus is to explore the data sources that can provide the software development team with insights to act upon the security vulnerabilities proactively. Across these modules of software landscape, customer landscape, and industry landscape, data sources are leveraged using artificial intelligence approaches to identify the security insights. The focus is also on building a smart knowledge management system that integrates the information processed across modules into a central system. This central intelligence system can be further leveraged to manage software development activities proactively. In this exploration, machine learning and deep learning approaches are devised to model the data and learn from across the modules. Architecture for all the modules and their integration is also proposed. Work helps to envision a smart system for Artificial Intelligence-based knowledge management for managing software security vulnerabilities.
AbstractList Software security vulnerabilities are significant for the software development industry. Exploration is conducted for software development industry landscape, software development eco-system landscape, and software system customer landscape. The focus is to explore the data sources that can provide the software development team with insights to act upon the security vulnerabilities proactively. Across these modules of software landscape, customer landscape, and industry landscape, data sources are leveraged using artificial intelligence approaches to identify the security insights. The focus is also on building a smart knowledge management system that integrates the information processed across modules into a central system. This central intelligence system can be further leveraged to manage software development activities proactively. In this exploration, machine learning and deep learning approaches are devised to model the data and learn from across the modules. Architecture for all the modules and their integration is also proposed. Work helps to envision a smart system for Artificial Intelligence-based knowledge management for managing software security vulnerabilities.
ArticleNumber 331
Author Hewage, Chaminda
Althar, Raghavendra Rao
Purushotham, Sathvik
Sengar, Sandeep Singh
Samanta, Debabrata
Author_xml – sequence: 1
  givenname: Raghavendra Rao
  surname: Althar
  fullname: Althar, Raghavendra Rao
  organization: CHRIST (Deemed to be) University, First American India Private Limited
– sequence: 2
  givenname: Debabrata
  surname: Samanta
  fullname: Samanta, Debabrata
  organization: CHRIST (Deemed to be) University, Department of Computational Information Technology, Rochester Institute of Technology-RIT Global
– sequence: 3
  givenname: Sathvik
  surname: Purushotham
  fullname: Purushotham, Sathvik
  organization: Department of Information Science, BMS Institute of Technology and Management
– sequence: 4
  givenname: Sandeep Singh
  orcidid: 0000-0003-2171-9332
  surname: Sengar
  fullname: Sengar, Sandeep Singh
  email: SSSengar@cardiffmet.ac.uk
  organization: Department of Computer Science, Cardiff Metropolitan University
– sequence: 5
  givenname: Chaminda
  surname: Hewage
  fullname: Hewage, Chaminda
  organization: Department of Computer Science, Cardiff Metropolitan University
BookMark eNp9kEtLAzEUhYNUsFb_gKuA69Ek88osS-ujWKigrkMmczOkTJOapGr99Y6toLjo6l4O57vnck7RwDoLCF1QckUJKa9DxqqySghLE0JLnifsCA1ZUdCEV6Qc_NlP0HkIS0IIy0mWFfkQfUwhmNZiaRs8hTfo3HoFNmKn8dhHo40yssMzG6HrTAtWAX6w7r2DpgX86J2CEIxt8dM2RFhh7TxerKNZmc-dCmrjTdx-n3tyOr5LDz_WM3SsZRfg_GeO0MvtzfPkPpkv7maT8TxRrOQsqaD_W-WaK56xvMlUXdepTJmkjMhKpinQTGe85lQrSgrgTd1LJal4XbBMN-kIXe7vrr173UCIYuk23vaRglWMspwXJO9dbO9S3oXgQYu1Nyvpt4IS8V2y2Jcs-pLFrmTBeoj_g5SJMhpno5emO4ymezT0ObYF__vVAeoLXuWUqw
CitedBy_id crossref_primary_10_1002_smr_70055
crossref_primary_10_1007_s11277_024_11015_4
crossref_primary_10_1109_JIOT_2025_3571532
Cites_doi 10.1007/s10664-011-9190-8
10.1007/978-3-319-23318-5_6
10.1109/JIOT.2020.2997651
10.1109/ACCESS.2021.3052311
10.1109/TSE.2019.2892959
10.1155/2021/8522839
10.1145/2914770.2837617
10.1109/TSE.2007.256941
10.1007/s10664-014-9300-5
10.1515/9783110703399
10.1007/s11334-020-00383-2
10.1016/S0950-5849(96)00006-7
10.1016/j.jss.2006.07.009
10.1007/978-3-319-25159-2_49
10.1145/2420950.2421003
10.1109/ACCESS.2021.3062388
10.1155/2020/8830683
10.1109/ACCESS.2020.3034766
10.1007/978-1-4419-6045-0_9
10.1109/ESCI48226.2020.9167512
10.1007/978-3-319-07821-2_13
10.1109/ACCESS.2020.3041181
10.1109/ACCESS.2020.2971000
10.1007/978-3-642-20573-6_21
10.1007/s41019-016-0019-8
10.1109/ICSE.2017.13
10.1109/SPIN.2015.7095310
10.1109/TSE.2014.2321179
10.1109/ACCESS.2020.3040220
10.1109/ACCESS.2021.3057044
10.1109/TSE.2018.2881961
10.1142/S0218001414500013
10.1145/2635868.2635880
10.1145/2837614.2837617
10.1007/s11334-020-00364-5
10.1145/1988630.1988632
10.1016/j.infsof.2011.09.002
ContentType Journal Article
Copyright Crown 2023
Crown 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Crown 2023
– notice: Crown 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s42979-023-01785-2
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2661-8907
ExternalDocumentID 10_1007_s42979_023_01785_2
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABHQN
ABJNI
ABMQK
ABTEG
ABTKH
ABWNU
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AFBBN
AFKRA
AFQWF
AGMZJ
AGQEE
AGRTI
AIGIU
AILAN
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ARAPS
BAPOH
BENPR
BGLVJ
C6C
CCPQU
DPUIP
EBLON
EBS
FIGPU
FNLPD
GGCAI
GNWQR
HCIFZ
IKXTQ
IWAJR
JZLTJ
K7-
LLZTM
NPVJJ
NQJWS
OK1
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
2JN
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
KOV
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c2782-9e890c5f8c8425d4cbbb3a32a120a9a33e14f48b81fc106e8db3e17098b624fd3
IEDL.DBID RSV
ISSN 2661-8907
2662-995X
IngestDate Wed Nov 05 14:48:05 EST 2025
Sat Nov 29 05:16:53 EST 2025
Tue Nov 18 20:51:06 EST 2025
Fri Feb 21 02:43:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Software vulnerability
Software development
Bi-directional encoder representation for transformers
Software security
Knowledge processing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2782-9e890c5f8c8425d4cbbb3a32a120a9a33e14f48b81fc106e8db3e17098b624fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2171-9332
OpenAccessLink https://link.springer.com/10.1007/s42979-023-01785-2
PQID 2921258605
PQPubID 6623307
ParticipantIDs proquest_journals_2921258605
crossref_primary_10_1007_s42979_023_01785_2
crossref_citationtrail_10_1007_s42979_023_01785_2
springer_journals_10_1007_s42979_023_01785_2
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Kolkata
PublicationTitle SN computer science
PublicationTitleAbbrev SN COMPUT. SCI
PublicationYear 2023
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References MisirliATBenerABBayesian networks for evidence-based decision-making in software engineeringIEEE Trans Softw Eng201440653355410.1109/TSE.2014.2321179
FoggiaPPercannellaGVentoMGraph matching and learning in pattern recognition in the last 10 yearsInt J Pattern Recognit Artif Intell201428011450001319001010.1142/S0218001414500013
MedeirosNIvakiNCostaPVieiraMVulnerable code detection using software metrics and machine learningIEEE Access2020821917421919810.1109/ACCESS.2020.3041181
Ben OthmaneLChehraziGBoddenETsalovskiPBruckerADTime for addressing software security issues: prediction models and impacting factorsData Sci Eng20172210712410.1007/s41019-016-0019-8
Mining graph patterns. Frequent pattern mining. 2014. p. 307–338.
WenJLiSLinZHuYHuangCSystematic literature review of machine learning based software development effort estimation modelsInf Softw Technol2012541415910.1016/j.infsof.2011.09.002
Chapter 16: lessons learned from software analytics in practice—the art and science of analyzing software data [Book]
Yamaguchi F, Lottmann M, Rieck K. Generalized vulnerability extrapolation using abstract syntax trees. in: proceedings of the 28th annual computer security applications conference, Orlando. 2012. p. 359–368.
Mishra MK, Sengar SS, Mukhopadhyay S. Algorithm for secure visual communication In: 2015 2nd international conference on signal processing and integrated networks. IEEE; 2015. p. 831–836.
ZengPLinGPanLTaiYZhangJSoftware vulnerability analysis and discovery using deep learning techniques: a surveyIEEE Access2020819715819717210.1109/ACCESS.2020.3034766
SengarSSKumarSRainaPMahaliyanMBot detection in social networks based on multilayered deep learning approachSens Transducers202024453743
Othmane L, Chehrazi G, Bodden E, Tsalovski P, Brucker AD, Miseldine P. Factors impacting the effort required to fix security vulnerabilities. In: Proceedings of the 18th international conference on information security, vol 9290, Trondheim. 2015. p. 102–119.
NinaHPow-SangJAVillavicencioMSystematic mapping of the literature on secure software developmentIEEE Access20219368523686710.1109/ACCESS.2021.3062388
Aggarwal CC, Wang H. A Survey of clustering algorithms for graph data. In: Aggarwal CC, Wang H, editors. Managing and mining graph data. Boston: Springer US; 2010. p. 275–301.
LongFRinardMAutomatic patch generation by learning correct codeSIGPLAN Not201651129831210.1145/2914770.2837617
AltharRRSamantaDThe realist approach for evaluation of computational intelligence in software engineeringInnov Syst Softw Eng2021171172710.1007/s11334-020-00383-2
AhmadAA systematic literature review on using machine learning algorithms for software requirements identification on stack overflowSecur Commun Netw2020202010.1155/2020/8830683
Hamill M, Goseva-Popstojanova K. Software faults fixing effort, NASA Goddard Space Flight Center, Greenbelt, 2014.
MoyoSMnkandlaEA novel lightweight solo software development methodology with optimum security practicesIEEE Access20208337353374710.1109/ACCESS.2020.2971000
KocaguneliEMenziesTMendesETransfer learning in effort estimationEmpir Softw Eng201520381384310.1007/s10664-014-9300-5
Al-MatouqHMahmoodSAlshayebMNiaziMA maturity model for secure software design: a multivocal studyIEEE Access2020821575821577610.1109/ACCESS.2020.3040220
Althar RR, Samanta D, Kaur M, Alnuaim AA, Aljaffan N, Aman Ullah M. Software systems security vulnerabilities management by exploring the capabilities of language models using NLP. Comput Intell Neurosci. 2021:e8522839.
Given-WilsonTJafriNLegayACombined software and hardware fault injection vulnerability detectionInnov Syst Softw Eng202016210112010.1007/s11334-020-00364-5
Peng H, Mou L, Li G, Liu Y, Zhang L, Jin Z. Building program vector representations for deep learning. In: Proceedings of the 8th international conference on knowledge science, engineering and management, vol 9403, Chongqing, China. 2015. p. 547–553.
Shin Y, Williams, L. An initial study on the use of execution complexity metrics as indicators of software vulnerabilities. In: Proceeding of the 7th international workshop on Software engineering for secure systems-SESS ’11. 2011.
GhaffarianSMShahriariHRSoftware vulnerability analysis and discovery using machine-learning and data-mining techniques: a surveyACM Comput Surv2017504
DamHKTranTPhamTNgSWGrundyJGhoseAAutomatic feature learning for predicting vulnerable software componentsIEEE Trans Softw Eng2021471678510.1109/TSE.2018.2881961
ShinYWilliamsLCan traditional fault prediction models be used for vulnerability prediction?Empir Softw Eng2013181255910.1007/s10664-011-9190-8
GrayARMacDonellSGA comparison of techniques for developing predictive models of software metricsInf Softw Technol199739642543710.1016/S0950-5849(96)00006-7
BreretonPKitchenhamBABudgenDTurnerMKhalilMLessons from applying the systematic literature review process within the software engineering domainJ Syst Softw200780457158310.1016/j.jss.2006.07.009
Rodeghero P, Jiang S, Armaly A, McMillan C. Detecting user story information in developer-client conversations to generate extractive summaries. In: 2017 IEEE/ACM 39th international conference on software engineering (ICSE). 2017. p. 49–59.
A survey of clustering algorithms for graph data, Managing and mining graph data. 2010. p. 275–301.
Sengar SS, Hariharan U, Rajkumar K. Multimodal biometric authentication system using deep learning method. In: 2020 international conference on emerging smart computing and informatics (ESCI). IEEE. 2020. p. 309–312.
Wallace D. Software requirements analysis as fault predictor. 2003.
Mezouar ME, Zhang F, Zou Y. Local versus global models for effort-aware defect prediction. In: Proceedings of the 26th annual international conference on computer science and software engineering, Toronto, 2016. p. 178–187.
QuYUsing K-core decomposition on class dependency networks to improve bug prediction model’s practical performanceIEEE Trans Softw Eng2021472348366420779310.1109/TSE.2019.2892959
ben Othmane L, Chehrazi G, Bodden E, Tsalovski P. Brucker AD, Miseldine P. Factors impacting the effort required to fix security vulnerabilities. Inf Secur. 2015:102–119.
Bosu A, Carver JC, Hafiz M, Hilley P , Janni D. Identifying the characteristics of vulnerable code changes: an empirical study. In: Proceedings of the 22nd ACM SIGSOFT international symposium on foundations of software engineering, Hong Kong, China. 2014. p. 257–268.
Ö. SönmezFKiliçBGHolistic web application security visualization for multi-project and multi-phase dynamic application security test resultsIEEE Access20219258582588410.1109/ACCESS.2021.3057044
Singh AP, Kumar V, Sengar SS, Wairiya M. Detection and prevention of phishing attack using dynamic watermarking. In: International conference on advances in information technology and mobile communication. Berlin: Springer; 2011. p. 132-137.
IqbalWAbbasHDaneshmandMRaufBBangashYAAn in-depth analysis of iot security requirements, challenges, and their countermeasures via software-defined securityIEEE Internet Things J2020710102501027610.1109/JIOT.2020.2997651
MenziesTGreenwaldJFrankAData mining static code attributes to learn defect predictorsIEEE Trans Softw Eng200733121310.1109/TSE.2007.256941
Rao Althar R, Samanta D, Konar D, Bhattacharyya S. Software source code: statistical modeling. De Gruyter; 2021.
Long F, Rinard M. Automatic patch generation by learning correct code. In: Proceedings of the 43rd annual ACM SIGPLAN-SIGACT symposium on principles of programming languages, St. Petersburg. 2016. p. 298–312.
KhanRAKhanSUKhanHUIlyasMSystematic mapping study on security approaches in secure software engineeringIEEE Access20219191391916010.1109/ACCESS.2021.3052311
T Given-Wilson (1785_CR8) 2020; 16
L Ben Othmane (1785_CR3) 2017; 2
F Ö. Sönmez (1785_CR33) 2021; 9
AR Gray (1785_CR6) 1997; 39
P Foggia (1785_CR21) 2014; 28
1785_CR14
1785_CR15
1785_CR12
1785_CR13
H Nina (1785_CR34) 2021; 9
1785_CR18
1785_CR19
1785_CR16
1785_CR38
1785_CR39
Y Qu (1785_CR36) 2021; 47
SM Ghaffarian (1785_CR10) 2017; 50
SS Sengar (1785_CR30) 2020; 244
W Iqbal (1785_CR29) 2020; 7
F Long (1785_CR45) 2016; 51
RR Althar (1785_CR2) 2021; 17
P Zeng (1785_CR43) 2020; 8
1785_CR22
T Menzies (1785_CR41) 2007; 33
1785_CR44
P Brereton (1785_CR17) 2007; 80
1785_CR20
1785_CR25
1785_CR26
H Al-Matouq (1785_CR32) 2020; 8
1785_CR23
1785_CR24
S Moyo (1785_CR31) 2020; 8
A Ahmad (1785_CR40) 2020; 2020
1785_CR1
N Medeiros (1785_CR35) 2020; 8
AT Misirli (1785_CR42) 2014; 40
1785_CR28
J Wen (1785_CR7) 2012; 54
Y Shin (1785_CR11) 2013; 18
E Kocaguneli (1785_CR9) 2015; 20
1785_CR5
RA Khan (1785_CR27) 2021; 9
HK Dam (1785_CR37) 2021; 47
1785_CR4
References_xml – reference: ben Othmane L, Chehrazi G, Bodden E, Tsalovski P. Brucker AD, Miseldine P. Factors impacting the effort required to fix security vulnerabilities. Inf Secur. 2015:102–119.
– reference: LongFRinardMAutomatic patch generation by learning correct codeSIGPLAN Not201651129831210.1145/2914770.2837617
– reference: Aggarwal CC, Wang H. A Survey of clustering algorithms for graph data. In: Aggarwal CC, Wang H, editors. Managing and mining graph data. Boston: Springer US; 2010. p. 275–301.
– reference: KhanRAKhanSUKhanHUIlyasMSystematic mapping study on security approaches in secure software engineeringIEEE Access20219191391916010.1109/ACCESS.2021.3052311
– reference: Althar RR, Samanta D, Kaur M, Alnuaim AA, Aljaffan N, Aman Ullah M. Software systems security vulnerabilities management by exploring the capabilities of language models using NLP. Comput Intell Neurosci. 2021:e8522839.
– reference: Yamaguchi F, Lottmann M, Rieck K. Generalized vulnerability extrapolation using abstract syntax trees. in: proceedings of the 28th annual computer security applications conference, Orlando. 2012. p. 359–368.
– reference: Al-MatouqHMahmoodSAlshayebMNiaziMA maturity model for secure software design: a multivocal studyIEEE Access2020821575821577610.1109/ACCESS.2020.3040220
– reference: AhmadAA systematic literature review on using machine learning algorithms for software requirements identification on stack overflowSecur Commun Netw2020202010.1155/2020/8830683
– reference: Mishra MK, Sengar SS, Mukhopadhyay S. Algorithm for secure visual communication In: 2015 2nd international conference on signal processing and integrated networks. IEEE; 2015. p. 831–836.
– reference: ShinYWilliamsLCan traditional fault prediction models be used for vulnerability prediction?Empir Softw Eng2013181255910.1007/s10664-011-9190-8
– reference: MisirliATBenerABBayesian networks for evidence-based decision-making in software engineeringIEEE Trans Softw Eng201440653355410.1109/TSE.2014.2321179
– reference: Shin Y, Williams, L. An initial study on the use of execution complexity metrics as indicators of software vulnerabilities. In: Proceeding of the 7th international workshop on Software engineering for secure systems-SESS ’11. 2011.
– reference: AltharRRSamantaDThe realist approach for evaluation of computational intelligence in software engineeringInnov Syst Softw Eng2021171172710.1007/s11334-020-00383-2
– reference: Singh AP, Kumar V, Sengar SS, Wairiya M. Detection and prevention of phishing attack using dynamic watermarking. In: International conference on advances in information technology and mobile communication. Berlin: Springer; 2011. p. 132-137.
– reference: DamHKTranTPhamTNgSWGrundyJGhoseAAutomatic feature learning for predicting vulnerable software componentsIEEE Trans Softw Eng2021471678510.1109/TSE.2018.2881961
– reference: Rao Althar R, Samanta D, Konar D, Bhattacharyya S. Software source code: statistical modeling. De Gruyter; 2021.
– reference: Ben OthmaneLChehraziGBoddenETsalovskiPBruckerADTime for addressing software security issues: prediction models and impacting factorsData Sci Eng20172210712410.1007/s41019-016-0019-8
– reference: Chapter 16: lessons learned from software analytics in practice—the art and science of analyzing software data [Book]
– reference: FoggiaPPercannellaGVentoMGraph matching and learning in pattern recognition in the last 10 yearsInt J Pattern Recognit Artif Intell201428011450001319001010.1142/S0218001414500013
– reference: Peng H, Mou L, Li G, Liu Y, Zhang L, Jin Z. Building program vector representations for deep learning. In: Proceedings of the 8th international conference on knowledge science, engineering and management, vol 9403, Chongqing, China. 2015. p. 547–553.
– reference: Wallace D. Software requirements analysis as fault predictor. 2003.
– reference: Bosu A, Carver JC, Hafiz M, Hilley P , Janni D. Identifying the characteristics of vulnerable code changes: an empirical study. In: Proceedings of the 22nd ACM SIGSOFT international symposium on foundations of software engineering, Hong Kong, China. 2014. p. 257–268.
– reference: Sengar SS, Hariharan U, Rajkumar K. Multimodal biometric authentication system using deep learning method. In: 2020 international conference on emerging smart computing and informatics (ESCI). IEEE. 2020. p. 309–312.
– reference: MenziesTGreenwaldJFrankAData mining static code attributes to learn defect predictorsIEEE Trans Softw Eng200733121310.1109/TSE.2007.256941
– reference: WenJLiSLinZHuYHuangCSystematic literature review of machine learning based software development effort estimation modelsInf Softw Technol2012541415910.1016/j.infsof.2011.09.002
– reference: Ö. SönmezFKiliçBGHolistic web application security visualization for multi-project and multi-phase dynamic application security test resultsIEEE Access20219258582588410.1109/ACCESS.2021.3057044
– reference: Hamill M, Goseva-Popstojanova K. Software faults fixing effort, NASA Goddard Space Flight Center, Greenbelt, 2014.
– reference: Mezouar ME, Zhang F, Zou Y. Local versus global models for effort-aware defect prediction. In: Proceedings of the 26th annual international conference on computer science and software engineering, Toronto, 2016. p. 178–187.
– reference: ZengPLinGPanLTaiYZhangJSoftware vulnerability analysis and discovery using deep learning techniques: a surveyIEEE Access2020819715819717210.1109/ACCESS.2020.3034766
– reference: Othmane L, Chehrazi G, Bodden E, Tsalovski P, Brucker AD, Miseldine P. Factors impacting the effort required to fix security vulnerabilities. In: Proceedings of the 18th international conference on information security, vol 9290, Trondheim. 2015. p. 102–119.
– reference: KocaguneliEMenziesTMendesETransfer learning in effort estimationEmpir Softw Eng201520381384310.1007/s10664-014-9300-5
– reference: Given-WilsonTJafriNLegayACombined software and hardware fault injection vulnerability detectionInnov Syst Softw Eng202016210112010.1007/s11334-020-00364-5
– reference: QuYUsing K-core decomposition on class dependency networks to improve bug prediction model’s practical performanceIEEE Trans Softw Eng2021472348366420779310.1109/TSE.2019.2892959
– reference: Long F, Rinard M. Automatic patch generation by learning correct code. In: Proceedings of the 43rd annual ACM SIGPLAN-SIGACT symposium on principles of programming languages, St. Petersburg. 2016. p. 298–312.
– reference: SengarSSKumarSRainaPMahaliyanMBot detection in social networks based on multilayered deep learning approachSens Transducers202024453743
– reference: NinaHPow-SangJAVillavicencioMSystematic mapping of the literature on secure software developmentIEEE Access20219368523686710.1109/ACCESS.2021.3062388
– reference: GhaffarianSMShahriariHRSoftware vulnerability analysis and discovery using machine-learning and data-mining techniques: a surveyACM Comput Surv2017504
– reference: GrayARMacDonellSGA comparison of techniques for developing predictive models of software metricsInf Softw Technol199739642543710.1016/S0950-5849(96)00006-7
– reference: MedeirosNIvakiNCostaPVieiraMVulnerable code detection using software metrics and machine learningIEEE Access2020821917421919810.1109/ACCESS.2020.3041181
– reference: A survey of clustering algorithms for graph data, Managing and mining graph data. 2010. p. 275–301.
– reference: Rodeghero P, Jiang S, Armaly A, McMillan C. Detecting user story information in developer-client conversations to generate extractive summaries. In: 2017 IEEE/ACM 39th international conference on software engineering (ICSE). 2017. p. 49–59.
– reference: IqbalWAbbasHDaneshmandMRaufBBangashYAAn in-depth analysis of iot security requirements, challenges, and their countermeasures via software-defined securityIEEE Internet Things J2020710102501027610.1109/JIOT.2020.2997651
– reference: MoyoSMnkandlaEA novel lightweight solo software development methodology with optimum security practicesIEEE Access20208337353374710.1109/ACCESS.2020.2971000
– reference: BreretonPKitchenhamBABudgenDTurnerMKhalilMLessons from applying the systematic literature review process within the software engineering domainJ Syst Softw200780457158310.1016/j.jss.2006.07.009
– reference: Mining graph patterns. Frequent pattern mining. 2014. p. 307–338.
– volume: 18
  start-page: 25
  issue: 1
  year: 2013
  ident: 1785_CR11
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-011-9190-8
– ident: 1785_CR13
  doi: 10.1007/978-3-319-23318-5_6
– volume: 7
  start-page: 10250
  issue: 10
  year: 2020
  ident: 1785_CR29
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2020.2997651
– ident: 1785_CR18
  doi: 10.1007/978-3-319-23318-5_6
– volume: 9
  start-page: 19139
  year: 2021
  ident: 1785_CR27
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3052311
– volume: 47
  start-page: 348
  issue: 2
  year: 2021
  ident: 1785_CR36
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2019.2892959
– ident: 1785_CR38
  doi: 10.1155/2021/8522839
– volume: 51
  start-page: 298
  issue: 1
  year: 2016
  ident: 1785_CR45
  publication-title: SIGPLAN Not
  doi: 10.1145/2914770.2837617
– ident: 1785_CR15
– volume: 33
  start-page: 2
  issue: 1
  year: 2007
  ident: 1785_CR41
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2007.256941
– volume: 50
  start-page: 4
  year: 2017
  ident: 1785_CR10
  publication-title: ACM Comput Surv
– volume: 20
  start-page: 813
  issue: 3
  year: 2015
  ident: 1785_CR9
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-014-9300-5
– ident: 1785_CR1
  doi: 10.1515/9783110703399
– volume: 17
  start-page: 17
  issue: 1
  year: 2021
  ident: 1785_CR2
  publication-title: Innov Syst Softw Eng
  doi: 10.1007/s11334-020-00383-2
– volume: 39
  start-page: 425
  issue: 6
  year: 1997
  ident: 1785_CR6
  publication-title: Inf Softw Technol
  doi: 10.1016/S0950-5849(96)00006-7
– volume: 80
  start-page: 571
  issue: 4
  year: 2007
  ident: 1785_CR17
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2006.07.009
– ident: 1785_CR26
  doi: 10.1007/978-3-319-25159-2_49
– ident: 1785_CR25
  doi: 10.1145/2420950.2421003
– volume: 9
  start-page: 36852
  year: 2021
  ident: 1785_CR34
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3062388
– volume: 2020
  year: 2020
  ident: 1785_CR40
  publication-title: Secur Commun Netw
  doi: 10.1155/2020/8830683
– volume: 8
  start-page: 197158
  year: 2020
  ident: 1785_CR43
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3034766
– ident: 1785_CR20
  doi: 10.1007/978-1-4419-6045-0_9
– ident: 1785_CR28
  doi: 10.1109/ESCI48226.2020.9167512
– ident: 1785_CR22
  doi: 10.1007/978-3-319-07821-2_13
– volume: 8
  start-page: 219174
  year: 2020
  ident: 1785_CR35
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3041181
– ident: 1785_CR12
– volume: 8
  start-page: 33735
  year: 2020
  ident: 1785_CR31
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2971000
– ident: 1785_CR4
  doi: 10.1007/978-3-642-20573-6_21
– ident: 1785_CR16
– volume: 2
  start-page: 107
  issue: 2
  year: 2017
  ident: 1785_CR3
  publication-title: Data Sci Eng
  doi: 10.1007/s41019-016-0019-8
– ident: 1785_CR14
– ident: 1785_CR39
  doi: 10.1109/ICSE.2017.13
– ident: 1785_CR5
  doi: 10.1109/SPIN.2015.7095310
– volume: 244
  start-page: 37
  issue: 5
  year: 2020
  ident: 1785_CR30
  publication-title: Sens Transducers
– volume: 40
  start-page: 533
  issue: 6
  year: 2014
  ident: 1785_CR42
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2014.2321179
– volume: 8
  start-page: 215758
  year: 2020
  ident: 1785_CR32
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3040220
– volume: 9
  start-page: 25858
  year: 2021
  ident: 1785_CR33
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3057044
– volume: 47
  start-page: 67
  issue: 1
  year: 2021
  ident: 1785_CR37
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2018.2881961
– volume: 28
  start-page: 1450001
  issue: 01
  year: 2014
  ident: 1785_CR21
  publication-title: Int J Pattern Recognit Artif Intell
  doi: 10.1142/S0218001414500013
– ident: 1785_CR19
  doi: 10.1145/2635868.2635880
– ident: 1785_CR23
  doi: 10.1007/978-1-4419-6045-0_9
– ident: 1785_CR24
  doi: 10.1145/2837614.2837617
– volume: 16
  start-page: 101
  issue: 2
  year: 2020
  ident: 1785_CR8
  publication-title: Innov Syst Softw Eng
  doi: 10.1007/s11334-020-00364-5
– ident: 1785_CR44
  doi: 10.1145/1988630.1988632
– volume: 54
  start-page: 41
  issue: 1
  year: 2012
  ident: 1785_CR7
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2011.09.002
SSID ssj0002504465
Score 2.341957
Snippet Software security vulnerabilities are significant for the software development industry. Exploration is conducted for software development industry landscape,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 331
SubjectTerms Artificial intelligence
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Customers
Cyber Security and Privacy in Communication Networks
Cybersecurity
Data science
Data sources
Data Structures and Information Theory
Deep learning
Industrial development
Information Systems and Communication Service
Knowledge management
Literature reviews
Machine learning
Modules
Original Research
Pattern Recognition and Graphics
Security
Software
Software development
Software Engineering/Programming and Operating Systems
Teams
Vision
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aPXjxgYrVKjl402A3yXaTk4halEoVVOht2c0DCrqtbX3gr3eSzbZV0IvX7GxYmNmZyczk-xA6ZJy1bExj1260hEOMJVIIQ1rCJjLTFk5kHsT1Jul2Ra8n70LBbRzGKiuf6B21HihXIz-hEpxsLCD7Ph2-EMca5bqrgUJjES1FlEbOzjsJmdZYHDwX92ySEIYokTLuhXsz_vYcuOJEEghaxHPUE_o9Ns0Szh89Uh962mv__eh1tBqSTnxWWskGWjDFJvq48MMbOCs0nhsdwgPrBUtkCXw9B9mJO1UBDof7BfC5uMQ8x5D84lvwP8_9T78aePHcdvfg6t-zkQmiW-ixfflwfkUCDwNRFBIIIo2QTRVboVzPTnOV5znLGM0i2sxkxpiJuOUiF5FVcMI0QuewlDSlyFuUW822Ua0YFGYHYQoStmkSprTkzMTCKK6tSSIVG8gVbR1FlQZSFUDKHVfGUzqFV_ZaS0FrqddaSuvoaPrOsITo-FO6UakqDb_rOJ3pqY6OK2XPHv--2-7fu-2hFerty433NlBtMno1-2hZvU3649GBN9YvFi3vXw
  priority: 102
  providerName: ProQuest
Title Design and Development of Artificial Intelligence Knowledge Processing System for Optimizing Security of Software System
URI https://link.springer.com/article/10.1007/s42979-023-01785-2
https://www.proquest.com/docview/2921258605
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: P5Z
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: K7-
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: RSV
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: RSV
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB7UevDiW6yPkoM3DXSTbDc5-ipKpZb6oHhZdrMJFLSVtj7w1zubZlsVFfSyh-wkhEwyM8nMfAOwxwWv2ZCFubvRUoE6liopDa1JG6kks3gjcyCuF1GzKTsd1fJJYcMi2r1wSTpJPUl2Q8kZKYo6hrqS8hQFbwnVncyPY_vqdvKykoNyiVroM2S-7_pZC01Nyy_eUKdk6kv_m94yLHqjkhyOd8EKzJjeKiwVBRuIP79r8Hri4jVI0svIh2gh0reu7xhMgpx_QOkkjeLNjfiUApwTGcOcE7R3ySWKnIfum2v1pfDy4a5Qur8kA-NJ1-Gmfnp9fEZ96QWqGdoMVBmpqjq0UuduukzoNE15wlkSsGqiEs5NIKyQqQysxkulkVmKTRFyI60xYTO-AXO9fs9sAmFIYasm4jpTgptQGi0ya6JAhwbNQ1uGoGBFrD0ueV4e4z6eICq7pY1xaWO3tDErw_6kz-MYleNX6p2Cw7E_ocOYKVTaocTbXBkOCo5Of_882tbfyLdhgblNkUf47sDcaPBkdmFeP4-6w0EFSkenzVa7ArONiOK3Fd5V3G5-B1L07YU
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xSXBhESDK6gOcIKKxncY-IIRYRNVSkACp4hISx5YqQQst-0fxjYydpAUkuHHg6jgTxX6exbMBrDPOKiaggXU3Go-jjPWkENqrCBPKODVokbkirvWw0RDNpjwbgvciF8aGVRY80THqtKPsHfk2lchkA4Ha9-7dvWe7RlnvatFCI4NFTb8-o8nW26ke4P5uUHp0eLF_7OVdBTxFURx6UgtZVoERynqgUq6SJGExo7FPy7GMGdM-N1wkwjcK7SUt0gSHwrIUSYVykzKkOwyjnKOxhOfnLLjq3-nYcmDcda9EsYdfkkEzz9Nx2XrI-kPpoZBE-z0UuDxfZeFAwf3mk3Wi7mjqvy3SNEzmSjXZy07BDAzp9iy8HLjgFBK3U_IpNIp0jJuYVc4g1U8lSUmtuGAkef4ELg_JaroTVO7JKfLX29abG837_lly5yjKnuOuzqfOweWf_Ow8jLQ7bb0AhOIMU9YhU6nkTAdCK54aHfoq0KgLmxL4xY5HKi_CbnuB3ET98tEOJRGiJHIoiWgJNvvv3GUlSH6dvVxAI8rZUS8a4KIEWwW4Bo9_prb4O7U1GD--OKlH9WqjtgQT1GHbhjIvw8hD91GvwJh6emj1uqvuoBC4_mvQfQA5bkwq
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6iIl6sT6xWzcGbhnaTbDc5irUollrwQW_LbjYBQdfS1gf-eifZbFtFBfGaTELIYx6ZmW8QOmScNU1IQ-tuNISDjCVSCE2awkQyyQxYZA7EtRN1u6Lfl72ZLH4X7V66JIucBovSlI_rg8zUJ4lvwEUjSUDeEFdengATXuC2aJC116_vJr8sFqCLN0OfLfP90M8SaapmfvGMOoHTrvx_qatoxSub-KS4HWtoTufrqFIWcsD-XW-gt5aL48BJnuGZKCL8ZNzYAmQCX8ygd-LL8i8O-1QDWB8u4M8x6MH4CljR4_27a_Ul8ux018D1X5Oh9qSb6LZ9dnN6TnxJBqIo6BJEaiEbKjRCWfddxlWapixhNAloI5EJYzrghotUBEaBsalFlkJT1JAibVJuMraF5vOnXG8jTIHCNHTEVCY506HQimdGR4EKNaiNpoqC8lhi5fHKbdmMh3iCtOy2Noatjd3WxrSKjiZjBgVax6_UtfK0Y_9yRzGVIMxDAVZeFR2Xpzvt_nm2nb-RH6ClXqsddy66l7tombr7YYOAa2h-PHzWe2hRvYzvR8N9d6E_AG0V9eM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+Development+of+Artificial+Intelligence+Knowledge+Processing+System+for+Optimizing+Security+of+Software+System&rft.jtitle=SN+computer+science&rft.au=Althar%2C+Raghavendra+Rao&rft.au=Samanta%2C+Debabrata&rft.au=Purushotham%2C+Sathvik&rft.au=Sengar%2C+Sandeep+Singh&rft.date=2023-07-01&rft.pub=Springer+Nature+Singapore&rft.eissn=2661-8907&rft.volume=4&rft.issue=4&rft_id=info:doi/10.1007%2Fs42979-023-01785-2&rft.externalDocID=10_1007_s42979_023_01785_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon