Hyperspectral Image Classification Based on Mathematical Morphology and Tensor Decomposition

Hyperspectral Image (HSI) classification refers to classifying hyperspectral data into features, where labels are given to pixels sharing the same features, distinguishing the present materials of the scene from one another. Naturally a HSI acquires spectral features of pixels, but spatial features...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical Morphology - Theory and Applications Ročník 4; číslo 1; s. 1 - 30
Hlavní autoři: Jouni, Mohamad, Mura, Mauro Dalla, Comon, Pierre
Médium: Journal Article
Jazyk:angličtina
Vydáno: De Gruyter Open 01.01.2020
De Gruyter
Témata:
ISSN:2353-3390, 2353-3390
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Hyperspectral Image (HSI) classification refers to classifying hyperspectral data into features, where labels are given to pixels sharing the same features, distinguishing the present materials of the scene from one another. Naturally a HSI acquires spectral features of pixels, but spatial features based on neighborhood information are also important, which results in the problem of spectral-spatial classification. There are various ways to account to spatial information, one of which is through Mathematical Morphology, which is explored in this work. A HSI is a third-order data block, and building new spatial diversities may increase this order. In many cases, since pixel-wise classification requires a matrix of pixels and features, HSI data are reshaped as matrices which causes high dimensionality and ignores the multi-modal structure of the features. This work deals with HSI classification by modeling the data as tensors of high order. More precisely, multi-modal hyperspectral data is built and dealt with using tensor Canonical Polyadic (CP) decomposition. Experiments on real HSI show the effectiveness of the CP decomposition as a candidate for classification thanks to its properties of representing the pixel data in a matrix compact form with a low dimensional feature space while maintaining the multi-modality of the data.
AbstractList Hyperspectral Image (HSI) classification refers to classifying hyperspectral data into features, where labels are given to pixels sharing the same features, distinguishing the present materials of the scene from one another. Naturally a HSI acquires spectral features of pixels, but spatial features based on neighborhood information are also important, which results in the problem of spectral-spatial classification. There are various ways to account to spatial information, one of which is through Mathematical Morphology, which is explored in this work. A HSI is a third-order data block, and building new spatial diversities may increase this order. In many cases, since pixel-wise classification requires a matrix of pixels and features, HSI data are reshaped as matrices which causes high dimensionality and ignores the multi-modal structure of the features. This work deals with HSI classification by modeling the data as tensors of high order. More precisely, multi-modal hyperspectral data is built and dealt with using tensor Canonical Polyadic (CP) decomposition. Experiments on real HSI show the effectiveness of the CP decomposition as a candidate for classification thanks to its properties of representing the pixel data in a matrix compact form with a low dimensional feature space while maintaining the multi-modality of the data.
Author Mura, Mauro Dalla
Jouni, Mohamad
Comon, Pierre
Author_xml – sequence: 1
  givenname: Mohamad
  surname: Jouni
  fullname: Jouni, Mohamad
  email: mohamad.jouni@gipsa-lab.fr
  organization: Univ. Grenoble Alpes, CNRS, Grenoble INP, Gipsa-Lab, Images-Signal Department, 38000 Grenoble, France
– sequence: 2
  givenname: Mauro Dalla
  surname: Mura
  fullname: Mura, Mauro Dalla
  email: mauro.dalla-mura@gipsa-lab.fr
  organization: Univ. Grenoble Alpes, CNRS, Grenoble INP, Gipsa-Lab, Images-Signal Department, 38000 Grenoble, France,; Tokyo Tech World Research Hub Initiative (WRHI), School of Computing, Tokyo Institute of Technology, Tokyo, Japan
– sequence: 3
  givenname: Pierre
  surname: Comon
  fullname: Comon, Pierre
  email: pierre.comon@gipsa-lab.fr
  organization: Univ. Grenoble Alpes, CNRS, Grenoble INP, Gipsa-Lab, Images-Signal Department, 38000 Grenoble, France
BackLink https://hal.science/hal-02401272$$DView record in HAL
BookMark eNp9kM9LwzAUx4NMcM6dvfbqoe4l6U9vc_6YsOFl3oSQpq9bpW1K0in97003ERH0lC9538978Dkno0Y3SMglhWsa0nBWy25X-wwY-ABAT8iY8ZD7nKcw-pHPyNTaMoMgiICnnI7J67Jv0dgWVWdk5T3VcoveopKuVpRKdqVuvFtpMfdcWLsr6E65QeWttWl3utLb3pNN7m2wsdp4d6h03WpbDuQFOS1kZXH69U7Iy8P9ZrH0V8-PT4v5ylcsTqifqgRUzmie0TRJMcoo5EXBI5AZTSDIkyjOGAswifMQM5AAoWRFWsQZBsgCxSfk6rh3JyvRmrKWphdalmI5X4nhD1gAlMXsnbvu7NhVRltrsPgGKIjBpTi4FINLMbh0RPiLUGV3MOOUldU_3M2R-5BVhybHrdn3Log3vTeN8_EXGVDKPwEu-5AE
CitedBy_id crossref_primary_10_1016_j_asoc_2021_107899
crossref_primary_10_1016_j_saa_2025_126584
crossref_primary_10_1109_TGRS_2023_3314218
crossref_primary_10_1016_j_eswa_2024_125145
Cites_doi 10.1109/LGRS.2010.2047711
10.1109/TSP.2016.2576427
10.1111/j.1349-7006.2011.01849.x
10.1109/JSTARS.2014.2329330
10.1080/19479832.2012.702687
10.1007/978-3-030-20867-7_15
10.1109/TGRS.2019.2892516
10.1109/TGRS.2009.2027895
10.1109/LSP.2014.2374838
10.1109/TIT.2016.2532906
10.3390/rs9111110
10.1002/jbio.201400051
10.1109/TGRS.2004.842478
10.1109/83.217222
10.1109/JPROC.2012.2197589
10.1109/TGRS.2003.814625
10.1109/TGRS.2005.846154
10.1109/MSP.2014.2298533
10.1080/01431161.2010.512425
10.1109/TGRS.2019.2936486
10.1109/IGARSS.2009.5418096
10.1109/IGARSS.2019.8898346
10.1029/2006JE002682
10.1016/j.patcog.2012.08.011
10.1109/TGRS.2016.2584107
10.1007/978-3-642-04898-2_455
10.1016/0024-3795(77)90069-6
10.1002/9781118600788
10.1109/TGRS.2015.2513424
10.1137/S0895479896305696
10.1016/j.pss.2012.11.004
10.1109/TGRS.2010.2048116
10.1109/TGRS.2015.2503737
ContentType Journal Article
Copyright Attribution
Copyright_xml – notice: Attribution
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1515/mathm-2020-0001
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2353-3390
EndPage 30
ExternalDocumentID oai:HAL:hal-02401272v3
10_1515_mathm_2020_0001
10_1515_mathm_2020_0001411
GroupedDBID AAFWJ
ALMA_UNASSIGNED_HOLDINGS
AAYXX
CITATION
1XC
VOOES
ID FETCH-LOGICAL-c2781-9c80cd21db1989e6b10dff360ab1804d867b224e87d5eb0a005a2f9f7be4e24c3
ISSN 2353-3390
IngestDate Tue Oct 14 20:51:11 EDT 2025
Tue Nov 18 22:20:24 EST 2025
Sat Nov 29 05:05:14 EST 2025
Sat Sep 06 17:01:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Scene Classification MSC: 15A69
Tensor Decomposition
94A08
Scene Classification
Attribute Profiles
Ten- sor Decomposition
Remote Sensing Image
Hyperspectral Imagery
Mathematical Morphology
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
Attribution: http://creativecommons.org/licenses/by
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2781-9c80cd21db1989e6b10dff360ab1804d867b224e87d5eb0a005a2f9f7be4e24c3
ORCID 0000-0002-7258-0935
0000-0001-9436-9228
0000-0002-9656-9087
OpenAccessLink https://hal.science/hal-02401272
PageCount 30
ParticipantIDs hal_primary_oai_HAL_hal_02401272v3
crossref_primary_10_1515_mathm_2020_0001
crossref_citationtrail_10_1515_mathm_2020_0001
walterdegruyter_journals_10_1515_mathm_2020_0001411
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Mathematical Morphology - Theory and Applications
PublicationYear 2020
Publisher De Gruyter Open
De Gruyter
Publisher_xml – name: De Gruyter Open
– name: De Gruyter
References 2022042712261286629_j_mathm-2020-0001_ref_029_w2aab3b7b2b1b6b1ab1ac29Aa
2022042712261286629_j_mathm-2020-0001_ref_016_w2aab3b7b2b1b6b1ab1ac16Aa
2022042712261286629_j_mathm-2020-0001_ref_001_w2aab3b7b2b1b6b1ab1ab1Aa
2022042712261286629_j_mathm-2020-0001_ref_002_w2aab3b7b2b1b6b1ab1ab2Aa
2022042712261286629_j_mathm-2020-0001_ref_025_w2aab3b7b2b1b6b1ab1ac25Aa
2022042712261286629_j_mathm-2020-0001_ref_020_w2aab3b7b2b1b6b1ab1ac20Aa
2022042712261286629_j_mathm-2020-0001_ref_033_w2aab3b7b2b1b6b1ab1ac33Aa
2022042712261286629_j_mathm-2020-0001_ref_011_w2aab3b7b2b1b6b1ab1ac11Aa
2022042712261286629_j_mathm-2020-0001_ref_038_w2aab3b7b2b1b6b1ab1ac38Aa
2022042712261286629_j_mathm-2020-0001_ref_013_w2aab3b7b2b1b6b1ab1ac13Aa
2022042712261286629_j_mathm-2020-0001_ref_026_w2aab3b7b2b1b6b1ab1ac26Aa
2022042712261286629_j_mathm-2020-0001_ref_041_w2aab3b7b2b1b6b1ab1ac41Aa
2022042712261286629_j_mathm-2020-0001_ref_039_w2aab3b7b2b1b6b1ab1ac39Aa
2022042712261286629_j_mathm-2020-0001_ref_004_w2aab3b7b2b1b6b1ab1ab4Aa
2022042712261286629_j_mathm-2020-0001_ref_035_w2aab3b7b2b1b6b1ab1ac35Aa
2022042712261286629_j_mathm-2020-0001_ref_023_w2aab3b7b2b1b6b1ab1ac23Aa
2022042712261286629_j_mathm-2020-0001_ref_003_w2aab3b7b2b1b6b1ab1ab3Aa
2022042712261286629_j_mathm-2020-0001_ref_017_w2aab3b7b2b1b6b1ab1ac17Aa
2022042712261286629_j_mathm-2020-0001_ref_032_w2aab3b7b2b1b6b1ab1ac32Aa
2022042712261286629_j_mathm-2020-0001_ref_006_w2aab3b7b2b1b6b1ab1ab6Aa
2022042712261286629_j_mathm-2020-0001_ref_040_w2aab3b7b2b1b6b1ab1ac40Aa
2022042712261286629_j_mathm-2020-0001_ref_018_w2aab3b7b2b1b6b1ab1ac18Aa
2022042712261286629_j_mathm-2020-0001_ref_010_w2aab3b7b2b1b6b1ab1ac10Aa
2022042712261286629_j_mathm-2020-0001_ref_014_w2aab3b7b2b1b6b1ab1ac14Aa
2022042712261286629_j_mathm-2020-0001_ref_005_w2aab3b7b2b1b6b1ab1ab5Aa
2022042712261286629_j_mathm-2020-0001_ref_036_w2aab3b7b2b1b6b1ab1ac36Aa
2022042712261286629_j_mathm-2020-0001_ref_031_w2aab3b7b2b1b6b1ab1ac31Aa
2022042712261286629_j_mathm-2020-0001_ref_022_w2aab3b7b2b1b6b1ab1ac22Aa
2022042712261286629_j_mathm-2020-0001_ref_027_w2aab3b7b2b1b6b1ab1ac27Aa
2022042712261286629_j_mathm-2020-0001_ref_015_w2aab3b7b2b1b6b1ab1ac15Aa
2022042712261286629_j_mathm-2020-0001_ref_028_w2aab3b7b2b1b6b1ab1ac28Aa
2022042712261286629_j_mathm-2020-0001_ref_019_w2aab3b7b2b1b6b1ab1ac19Aa
2022042712261286629_j_mathm-2020-0001_ref_024_w2aab3b7b2b1b6b1ab1ac24Aa
2022042712261286629_j_mathm-2020-0001_ref_030_w2aab3b7b2b1b6b1ab1ac30Aa
2022042712261286629_j_mathm-2020-0001_ref_009_w2aab3b7b2b1b6b1ab1ab9Aa
2022042712261286629_j_mathm-2020-0001_ref_034_w2aab3b7b2b1b6b1ab1ac34Aa
2022042712261286629_j_mathm-2020-0001_ref_021_w2aab3b7b2b1b6b1ab1ac21Aa
2022042712261286629_j_mathm-2020-0001_ref_007_w2aab3b7b2b1b6b1ab1ab7Aa
2022042712261286629_j_mathm-2020-0001_ref_008_w2aab3b7b2b1b6b1ab1ab8Aa
2022042712261286629_j_mathm-2020-0001_ref_012_w2aab3b7b2b1b6b1ab1ac12Aa
2022042712261286629_j_mathm-2020-0001_ref_037_w2aab3b7b2b1b6b1ab1ac37Aa
References_xml – ident: 2022042712261286629_j_mathm-2020-0001_ref_036_w2aab3b7b2b1b6b1ab1ac36Aa
  doi: 10.1109/LGRS.2010.2047711
– ident: 2022042712261286629_j_mathm-2020-0001_ref_020_w2aab3b7b2b1b6b1ab1ac20Aa
  doi: 10.1109/TSP.2016.2576427
– ident: 2022042712261286629_j_mathm-2020-0001_ref_002_w2aab3b7b2b1b6b1ab1ab2Aa
  doi: 10.1111/j.1349-7006.2011.01849.x
– ident: 2022042712261286629_j_mathm-2020-0001_ref_019_w2aab3b7b2b1b6b1ab1ac19Aa
– ident: 2022042712261286629_j_mathm-2020-0001_ref_009_w2aab3b7b2b1b6b1ab1ab9Aa
  doi: 10.1109/JSTARS.2014.2329330
– ident: 2022042712261286629_j_mathm-2020-0001_ref_021_w2aab3b7b2b1b6b1ab1ac21Aa
– ident: 2022042712261286629_j_mathm-2020-0001_ref_026_w2aab3b7b2b1b6b1ab1ac26Aa
  doi: 10.1080/19479832.2012.702687
– ident: 2022042712261286629_j_mathm-2020-0001_ref_023_w2aab3b7b2b1b6b1ab1ac23Aa
  doi: 10.1007/978-3-030-20867-7_15
– ident: 2022042712261286629_j_mathm-2020-0001_ref_018_w2aab3b7b2b1b6b1ab1ac18Aa
  doi: 10.1109/TGRS.2019.2892516
– ident: 2022042712261286629_j_mathm-2020-0001_ref_037_w2aab3b7b2b1b6b1ab1ac37Aa
  doi: 10.1109/TGRS.2009.2027895
– ident: 2022042712261286629_j_mathm-2020-0001_ref_010_w2aab3b7b2b1b6b1ab1ac10Aa
  doi: 10.1109/LSP.2014.2374838
– ident: 2022042712261286629_j_mathm-2020-0001_ref_030_w2aab3b7b2b1b6b1ab1ac30Aa
  doi: 10.1109/TIT.2016.2532906
– ident: 2022042712261286629_j_mathm-2020-0001_ref_034_w2aab3b7b2b1b6b1ab1ac34Aa
– ident: 2022042712261286629_j_mathm-2020-0001_ref_001_w2aab3b7b2b1b6b1ab1ab1Aa
  doi: 10.3390/rs9111110
– ident: 2022042712261286629_j_mathm-2020-0001_ref_004_w2aab3b7b2b1b6b1ab1ab4Aa
– ident: 2022042712261286629_j_mathm-2020-0001_ref_017_w2aab3b7b2b1b6b1ab1ac17Aa
  doi: 10.1002/jbio.201400051
– ident: 2022042712261286629_j_mathm-2020-0001_ref_005_w2aab3b7b2b1b6b1ab1ab5Aa
  doi: 10.1109/TGRS.2004.842478
– ident: 2022042712261286629_j_mathm-2020-0001_ref_032_w2aab3b7b2b1b6b1ab1ac32Aa
– ident: 2022042712261286629_j_mathm-2020-0001_ref_040_w2aab3b7b2b1b6b1ab1ac40Aa
  doi: 10.1109/83.217222
– ident: 2022042712261286629_j_mathm-2020-0001_ref_016_w2aab3b7b2b1b6b1ab1ac16Aa
  doi: 10.1109/JPROC.2012.2197589
– ident: 2022042712261286629_j_mathm-2020-0001_ref_006_w2aab3b7b2b1b6b1ab1ab6Aa
  doi: 10.1109/TGRS.2003.814625
– ident: 2022042712261286629_j_mathm-2020-0001_ref_007_w2aab3b7b2b1b6b1ab1ab7Aa
  doi: 10.1109/TGRS.2005.846154
– ident: 2022042712261286629_j_mathm-2020-0001_ref_011_w2aab3b7b2b1b6b1ab1ac11Aa
  doi: 10.1109/MSP.2014.2298533
– ident: 2022042712261286629_j_mathm-2020-0001_ref_013_w2aab3b7b2b1b6b1ab1ac13Aa
  doi: 10.1080/01431161.2010.512425
– ident: 2022042712261286629_j_mathm-2020-0001_ref_041_w2aab3b7b2b1b6b1ab1ac41Aa
  doi: 10.1109/TGRS.2019.2936486
– ident: 2022042712261286629_j_mathm-2020-0001_ref_012_w2aab3b7b2b1b6b1ab1ac12Aa
  doi: 10.1109/IGARSS.2009.5418096
– ident: 2022042712261286629_j_mathm-2020-0001_ref_024_w2aab3b7b2b1b6b1ab1ac24Aa
  doi: 10.1109/IGARSS.2019.8898346
– ident: 2022042712261286629_j_mathm-2020-0001_ref_027_w2aab3b7b2b1b6b1ab1ac27Aa
  doi: 10.1029/2006JE002682
– ident: 2022042712261286629_j_mathm-2020-0001_ref_039_w2aab3b7b2b1b6b1ab1ac39Aa
  doi: 10.1016/j.patcog.2012.08.011
– ident: 2022042712261286629_j_mathm-2020-0001_ref_035_w2aab3b7b2b1b6b1ab1ac35Aa
– ident: 2022042712261286629_j_mathm-2020-0001_ref_008_w2aab3b7b2b1b6b1ab1ab8Aa
  doi: 10.1109/TGRS.2016.2584107
– ident: 2022042712261286629_j_mathm-2020-0001_ref_022_w2aab3b7b2b1b6b1ab1ac22Aa
  doi: 10.1007/978-3-642-04898-2_455
– ident: 2022042712261286629_j_mathm-2020-0001_ref_025_w2aab3b7b2b1b6b1ab1ac25Aa
  doi: 10.1016/0024-3795(77)90069-6
– ident: 2022042712261286629_j_mathm-2020-0001_ref_028_w2aab3b7b2b1b6b1ab1ac28Aa
  doi: 10.1002/9781118600788
– ident: 2022042712261286629_j_mathm-2020-0001_ref_003_w2aab3b7b2b1b6b1ab1ab3Aa
  doi: 10.1109/TGRS.2015.2513424
– ident: 2022042712261286629_j_mathm-2020-0001_ref_015_w2aab3b7b2b1b6b1ab1ac15Aa
  doi: 10.1137/S0895479896305696
– ident: 2022042712261286629_j_mathm-2020-0001_ref_033_w2aab3b7b2b1b6b1ab1ac33Aa
– ident: 2022042712261286629_j_mathm-2020-0001_ref_031_w2aab3b7b2b1b6b1ab1ac31Aa
– ident: 2022042712261286629_j_mathm-2020-0001_ref_029_w2aab3b7b2b1b6b1ab1ac29Aa
  doi: 10.1016/j.pss.2012.11.004
– ident: 2022042712261286629_j_mathm-2020-0001_ref_014_w2aab3b7b2b1b6b1ab1ac14Aa
  doi: 10.1109/TGRS.2010.2048116
– ident: 2022042712261286629_j_mathm-2020-0001_ref_038_w2aab3b7b2b1b6b1ab1ac38Aa
  doi: 10.1109/TGRS.2015.2503737
SSID ssib044603931
ssib020483505
ssib022702161
Score 2.0906272
Snippet Hyperspectral Image (HSI) classification refers to classifying hyperspectral data into features, where labels are given to pixels sharing the same features,...
SourceID hal
crossref
walterdegruyter
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms 15A69
94A08
Attribute Profiles
Computer Science
Hyperspectral Imagery
Image Processing
Mathematical Morphology
Remote Sensing Image
Scene Classification
Tensor Decomposition
Title Hyperspectral Image Classification Based on Mathematical Morphology and Tensor Decomposition
URI https://www.degruyter.com/doi/10.1515/mathm-2020-0001
https://hal.science/hal-02401272
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2353-3390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib020483505
  issn: 2353-3390
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWwoFLBQLEloIsxIFLIH5kHR8XKFokWvWwSD0gRUnsZZG62SrtLu2Fv8PfZMb25rHVSoDEJYqieGR5vsx44m9mCHklZ8xwq8soBXcXgQvII0CJgZinVBATaStV7ppNqJOT9OxMnw4Gvza5MOtzVVXp9bW--K-qhmegbEyd_Qt1N0LhAdyD0uEKaofrHyl-ApGlT6DE3PtPCyTluNaXSAry6n4HrsvgMcFxU7QVU3SXsOZtSaYpBLjLGgwSss4Dtau7ld01Ngr5_k7IuHM-3pJ1Vq6PFAya54vcdHSe-_ShVb0EOPp2SCGJZOHZAafgxQNdN_yq4PHWr4oPgPt6dYPFH5Et4z2QM3VcJCISwjcO3dhleQt-3sayjrP2Zzq33EDiKmbAEswXkZ9IHObRK7i95QgbeiIGRiAicwIyFODO6CXmkN_lKtHIHTz-ebQxXFj8WCSt4eSY5MfahGEIuTEFmoXSUiD67dbceruiO3Pk5O7_cHwJY7_5Netse6YPyH6IV-jY4-whGdjqEfnawxh1GKN9jFGHMQo3XZzQFicU4EE9xmgPY4_Jl49H0_eTKLTpiEquUhbpMo1Lw5kpkH9nRwWLzWwmRnFesDSWJh2pAjaKNlUmsUWcg93P-UzPVGGl5bIUT8hetazsU0IxcVtyW6oYwlwxkoXW4IGUFVIzLUU-JG82y5SVoYY9tlI5z3aobEheNwMufPmW3a--hHVv3sKy65Px5wyfYR1AxhVfiyERW2rJwqd_uUsuoObgn0Y9I_fbj-iQ7F3VK_uc3CvXV98v6xcOgL8B6WS2hg
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperspectral+Image+Classification+Based+on+Mathematical+Morphology+and+Tensor+Decomposition&rft.jtitle=Mathematical+Morphology+-+Theory+and+Applications&rft.au=Jouni%2C+Mohamad&rft.au=Mura%2C+Mauro+Dalla&rft.au=Comon%2C+Pierre&rft.date=2020-01-01&rft.pub=De+Gruyter+Open&rft.eissn=2353-3390&rft.volume=4&rft.issue=1&rft.spage=1&rft.epage=30&rft_id=info:doi/10.1515%2Fmathm-2020-0001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_mathm_2020_0001411
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2353-3390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2353-3390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2353-3390&client=summon