Hyperspectral Image Classification Based on Mathematical Morphology and Tensor Decomposition
Hyperspectral Image (HSI) classification refers to classifying hyperspectral data into features, where labels are given to pixels sharing the same features, distinguishing the present materials of the scene from one another. Naturally a HSI acquires spectral features of pixels, but spatial features...
Uloženo v:
| Vydáno v: | Mathematical Morphology - Theory and Applications Ročník 4; číslo 1; s. 1 - 30 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
De Gruyter Open
01.01.2020
De Gruyter |
| Témata: | |
| ISSN: | 2353-3390, 2353-3390 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Hyperspectral Image (HSI) classification refers to classifying hyperspectral data into features, where labels are given to pixels sharing the same features, distinguishing the present materials of the scene from one another. Naturally a HSI acquires spectral features of pixels, but spatial features based on neighborhood information are also important, which results in the problem of spectral-spatial classification. There are various ways to account to spatial information, one of which is through Mathematical Morphology, which is explored in this work. A HSI is a third-order data block, and building new spatial diversities may increase this order. In many cases, since pixel-wise classification requires a matrix of pixels and features, HSI data are reshaped as matrices which causes high dimensionality and ignores the multi-modal structure of the features. This work deals with HSI classification by modeling the data as tensors of high order. More precisely, multi-modal hyperspectral data is built and dealt with using tensor Canonical Polyadic (CP) decomposition. Experiments on real HSI show the effectiveness of the CP decomposition as a candidate for classification thanks to its properties of representing the pixel data in a matrix compact form with a low dimensional feature space while maintaining the multi-modality of the data. |
|---|---|
| AbstractList | Hyperspectral Image (HSI) classification refers to classifying hyperspectral data into features, where labels are given to pixels sharing the same features, distinguishing the present materials of the scene from one another. Naturally a HSI acquires spectral features of pixels, but spatial features based on neighborhood information are also important, which results in the problem of spectral-spatial classification. There are various ways to account to spatial information, one of which is through Mathematical Morphology, which is explored in this work. A HSI is a third-order data block, and building new spatial diversities may increase this order. In many cases, since pixel-wise classification requires a matrix of pixels and features, HSI data are reshaped as matrices which causes high dimensionality and ignores the multi-modal structure of the features. This work deals with HSI classification by modeling the data as tensors of high order. More precisely, multi-modal hyperspectral data is built and dealt with using tensor Canonical Polyadic (CP) decomposition. Experiments on real HSI show the effectiveness of the CP decomposition as a candidate for classification thanks to its properties of representing the pixel data in a matrix compact form with a low dimensional feature space while maintaining the multi-modality of the data. |
| Author | Mura, Mauro Dalla Jouni, Mohamad Comon, Pierre |
| Author_xml | – sequence: 1 givenname: Mohamad surname: Jouni fullname: Jouni, Mohamad email: mohamad.jouni@gipsa-lab.fr organization: Univ. Grenoble Alpes, CNRS, Grenoble INP, Gipsa-Lab, Images-Signal Department, 38000 Grenoble, France – sequence: 2 givenname: Mauro Dalla surname: Mura fullname: Mura, Mauro Dalla email: mauro.dalla-mura@gipsa-lab.fr organization: Univ. Grenoble Alpes, CNRS, Grenoble INP, Gipsa-Lab, Images-Signal Department, 38000 Grenoble, France,; Tokyo Tech World Research Hub Initiative (WRHI), School of Computing, Tokyo Institute of Technology, Tokyo, Japan – sequence: 3 givenname: Pierre surname: Comon fullname: Comon, Pierre email: pierre.comon@gipsa-lab.fr organization: Univ. Grenoble Alpes, CNRS, Grenoble INP, Gipsa-Lab, Images-Signal Department, 38000 Grenoble, France |
| BackLink | https://hal.science/hal-02401272$$DView record in HAL |
| BookMark | eNp9kM9LwzAUx4NMcM6dvfbqoe4l6U9vc_6YsOFl3oSQpq9bpW1K0in97003ERH0lC9538978Dkno0Y3SMglhWsa0nBWy25X-wwY-ABAT8iY8ZD7nKcw-pHPyNTaMoMgiICnnI7J67Jv0dgWVWdk5T3VcoveopKuVpRKdqVuvFtpMfdcWLsr6E65QeWttWl3utLb3pNN7m2wsdp4d6h03WpbDuQFOS1kZXH69U7Iy8P9ZrH0V8-PT4v5ylcsTqifqgRUzmie0TRJMcoo5EXBI5AZTSDIkyjOGAswifMQM5AAoWRFWsQZBsgCxSfk6rh3JyvRmrKWphdalmI5X4nhD1gAlMXsnbvu7NhVRltrsPgGKIjBpTi4FINLMbh0RPiLUGV3MOOUldU_3M2R-5BVhybHrdn3Log3vTeN8_EXGVDKPwEu-5AE |
| CitedBy_id | crossref_primary_10_1016_j_asoc_2021_107899 crossref_primary_10_1016_j_saa_2025_126584 crossref_primary_10_1109_TGRS_2023_3314218 crossref_primary_10_1016_j_eswa_2024_125145 |
| Cites_doi | 10.1109/LGRS.2010.2047711 10.1109/TSP.2016.2576427 10.1111/j.1349-7006.2011.01849.x 10.1109/JSTARS.2014.2329330 10.1080/19479832.2012.702687 10.1007/978-3-030-20867-7_15 10.1109/TGRS.2019.2892516 10.1109/TGRS.2009.2027895 10.1109/LSP.2014.2374838 10.1109/TIT.2016.2532906 10.3390/rs9111110 10.1002/jbio.201400051 10.1109/TGRS.2004.842478 10.1109/83.217222 10.1109/JPROC.2012.2197589 10.1109/TGRS.2003.814625 10.1109/TGRS.2005.846154 10.1109/MSP.2014.2298533 10.1080/01431161.2010.512425 10.1109/TGRS.2019.2936486 10.1109/IGARSS.2009.5418096 10.1109/IGARSS.2019.8898346 10.1029/2006JE002682 10.1016/j.patcog.2012.08.011 10.1109/TGRS.2016.2584107 10.1007/978-3-642-04898-2_455 10.1016/0024-3795(77)90069-6 10.1002/9781118600788 10.1109/TGRS.2015.2513424 10.1137/S0895479896305696 10.1016/j.pss.2012.11.004 10.1109/TGRS.2010.2048116 10.1109/TGRS.2015.2503737 |
| ContentType | Journal Article |
| Copyright | Attribution |
| Copyright_xml | – notice: Attribution |
| DBID | AAYXX CITATION 1XC VOOES |
| DOI | 10.1515/mathm-2020-0001 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2353-3390 |
| EndPage | 30 |
| ExternalDocumentID | oai:HAL:hal-02401272v3 10_1515_mathm_2020_0001 10_1515_mathm_2020_0001411 |
| GroupedDBID | AAFWJ ALMA_UNASSIGNED_HOLDINGS AAYXX CITATION 1XC VOOES |
| ID | FETCH-LOGICAL-c2781-9c80cd21db1989e6b10dff360ab1804d867b224e87d5eb0a005a2f9f7be4e24c3 |
| ISSN | 2353-3390 |
| IngestDate | Tue Oct 14 20:51:11 EDT 2025 Tue Nov 18 22:20:24 EST 2025 Sat Nov 29 05:05:14 EST 2025 Sat Sep 06 17:01:20 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Scene Classification MSC: 15A69 Tensor Decomposition 94A08 Scene Classification Attribute Profiles Ten- sor Decomposition Remote Sensing Image Hyperspectral Imagery Mathematical Morphology |
| Language | English |
| License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 Attribution: http://creativecommons.org/licenses/by |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2781-9c80cd21db1989e6b10dff360ab1804d867b224e87d5eb0a005a2f9f7be4e24c3 |
| ORCID | 0000-0002-7258-0935 0000-0001-9436-9228 0000-0002-9656-9087 |
| OpenAccessLink | https://hal.science/hal-02401272 |
| PageCount | 30 |
| ParticipantIDs | hal_primary_oai_HAL_hal_02401272v3 crossref_primary_10_1515_mathm_2020_0001 crossref_citationtrail_10_1515_mathm_2020_0001 walterdegruyter_journals_10_1515_mathm_2020_0001411 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Mathematical Morphology - Theory and Applications |
| PublicationYear | 2020 |
| Publisher | De Gruyter Open De Gruyter |
| Publisher_xml | – name: De Gruyter Open – name: De Gruyter |
| References | 2022042712261286629_j_mathm-2020-0001_ref_029_w2aab3b7b2b1b6b1ab1ac29Aa 2022042712261286629_j_mathm-2020-0001_ref_016_w2aab3b7b2b1b6b1ab1ac16Aa 2022042712261286629_j_mathm-2020-0001_ref_001_w2aab3b7b2b1b6b1ab1ab1Aa 2022042712261286629_j_mathm-2020-0001_ref_002_w2aab3b7b2b1b6b1ab1ab2Aa 2022042712261286629_j_mathm-2020-0001_ref_025_w2aab3b7b2b1b6b1ab1ac25Aa 2022042712261286629_j_mathm-2020-0001_ref_020_w2aab3b7b2b1b6b1ab1ac20Aa 2022042712261286629_j_mathm-2020-0001_ref_033_w2aab3b7b2b1b6b1ab1ac33Aa 2022042712261286629_j_mathm-2020-0001_ref_011_w2aab3b7b2b1b6b1ab1ac11Aa 2022042712261286629_j_mathm-2020-0001_ref_038_w2aab3b7b2b1b6b1ab1ac38Aa 2022042712261286629_j_mathm-2020-0001_ref_013_w2aab3b7b2b1b6b1ab1ac13Aa 2022042712261286629_j_mathm-2020-0001_ref_026_w2aab3b7b2b1b6b1ab1ac26Aa 2022042712261286629_j_mathm-2020-0001_ref_041_w2aab3b7b2b1b6b1ab1ac41Aa 2022042712261286629_j_mathm-2020-0001_ref_039_w2aab3b7b2b1b6b1ab1ac39Aa 2022042712261286629_j_mathm-2020-0001_ref_004_w2aab3b7b2b1b6b1ab1ab4Aa 2022042712261286629_j_mathm-2020-0001_ref_035_w2aab3b7b2b1b6b1ab1ac35Aa 2022042712261286629_j_mathm-2020-0001_ref_023_w2aab3b7b2b1b6b1ab1ac23Aa 2022042712261286629_j_mathm-2020-0001_ref_003_w2aab3b7b2b1b6b1ab1ab3Aa 2022042712261286629_j_mathm-2020-0001_ref_017_w2aab3b7b2b1b6b1ab1ac17Aa 2022042712261286629_j_mathm-2020-0001_ref_032_w2aab3b7b2b1b6b1ab1ac32Aa 2022042712261286629_j_mathm-2020-0001_ref_006_w2aab3b7b2b1b6b1ab1ab6Aa 2022042712261286629_j_mathm-2020-0001_ref_040_w2aab3b7b2b1b6b1ab1ac40Aa 2022042712261286629_j_mathm-2020-0001_ref_018_w2aab3b7b2b1b6b1ab1ac18Aa 2022042712261286629_j_mathm-2020-0001_ref_010_w2aab3b7b2b1b6b1ab1ac10Aa 2022042712261286629_j_mathm-2020-0001_ref_014_w2aab3b7b2b1b6b1ab1ac14Aa 2022042712261286629_j_mathm-2020-0001_ref_005_w2aab3b7b2b1b6b1ab1ab5Aa 2022042712261286629_j_mathm-2020-0001_ref_036_w2aab3b7b2b1b6b1ab1ac36Aa 2022042712261286629_j_mathm-2020-0001_ref_031_w2aab3b7b2b1b6b1ab1ac31Aa 2022042712261286629_j_mathm-2020-0001_ref_022_w2aab3b7b2b1b6b1ab1ac22Aa 2022042712261286629_j_mathm-2020-0001_ref_027_w2aab3b7b2b1b6b1ab1ac27Aa 2022042712261286629_j_mathm-2020-0001_ref_015_w2aab3b7b2b1b6b1ab1ac15Aa 2022042712261286629_j_mathm-2020-0001_ref_028_w2aab3b7b2b1b6b1ab1ac28Aa 2022042712261286629_j_mathm-2020-0001_ref_019_w2aab3b7b2b1b6b1ab1ac19Aa 2022042712261286629_j_mathm-2020-0001_ref_024_w2aab3b7b2b1b6b1ab1ac24Aa 2022042712261286629_j_mathm-2020-0001_ref_030_w2aab3b7b2b1b6b1ab1ac30Aa 2022042712261286629_j_mathm-2020-0001_ref_009_w2aab3b7b2b1b6b1ab1ab9Aa 2022042712261286629_j_mathm-2020-0001_ref_034_w2aab3b7b2b1b6b1ab1ac34Aa 2022042712261286629_j_mathm-2020-0001_ref_021_w2aab3b7b2b1b6b1ab1ac21Aa 2022042712261286629_j_mathm-2020-0001_ref_007_w2aab3b7b2b1b6b1ab1ab7Aa 2022042712261286629_j_mathm-2020-0001_ref_008_w2aab3b7b2b1b6b1ab1ab8Aa 2022042712261286629_j_mathm-2020-0001_ref_012_w2aab3b7b2b1b6b1ab1ac12Aa 2022042712261286629_j_mathm-2020-0001_ref_037_w2aab3b7b2b1b6b1ab1ac37Aa |
| References_xml | – ident: 2022042712261286629_j_mathm-2020-0001_ref_036_w2aab3b7b2b1b6b1ab1ac36Aa doi: 10.1109/LGRS.2010.2047711 – ident: 2022042712261286629_j_mathm-2020-0001_ref_020_w2aab3b7b2b1b6b1ab1ac20Aa doi: 10.1109/TSP.2016.2576427 – ident: 2022042712261286629_j_mathm-2020-0001_ref_002_w2aab3b7b2b1b6b1ab1ab2Aa doi: 10.1111/j.1349-7006.2011.01849.x – ident: 2022042712261286629_j_mathm-2020-0001_ref_019_w2aab3b7b2b1b6b1ab1ac19Aa – ident: 2022042712261286629_j_mathm-2020-0001_ref_009_w2aab3b7b2b1b6b1ab1ab9Aa doi: 10.1109/JSTARS.2014.2329330 – ident: 2022042712261286629_j_mathm-2020-0001_ref_021_w2aab3b7b2b1b6b1ab1ac21Aa – ident: 2022042712261286629_j_mathm-2020-0001_ref_026_w2aab3b7b2b1b6b1ab1ac26Aa doi: 10.1080/19479832.2012.702687 – ident: 2022042712261286629_j_mathm-2020-0001_ref_023_w2aab3b7b2b1b6b1ab1ac23Aa doi: 10.1007/978-3-030-20867-7_15 – ident: 2022042712261286629_j_mathm-2020-0001_ref_018_w2aab3b7b2b1b6b1ab1ac18Aa doi: 10.1109/TGRS.2019.2892516 – ident: 2022042712261286629_j_mathm-2020-0001_ref_037_w2aab3b7b2b1b6b1ab1ac37Aa doi: 10.1109/TGRS.2009.2027895 – ident: 2022042712261286629_j_mathm-2020-0001_ref_010_w2aab3b7b2b1b6b1ab1ac10Aa doi: 10.1109/LSP.2014.2374838 – ident: 2022042712261286629_j_mathm-2020-0001_ref_030_w2aab3b7b2b1b6b1ab1ac30Aa doi: 10.1109/TIT.2016.2532906 – ident: 2022042712261286629_j_mathm-2020-0001_ref_034_w2aab3b7b2b1b6b1ab1ac34Aa – ident: 2022042712261286629_j_mathm-2020-0001_ref_001_w2aab3b7b2b1b6b1ab1ab1Aa doi: 10.3390/rs9111110 – ident: 2022042712261286629_j_mathm-2020-0001_ref_004_w2aab3b7b2b1b6b1ab1ab4Aa – ident: 2022042712261286629_j_mathm-2020-0001_ref_017_w2aab3b7b2b1b6b1ab1ac17Aa doi: 10.1002/jbio.201400051 – ident: 2022042712261286629_j_mathm-2020-0001_ref_005_w2aab3b7b2b1b6b1ab1ab5Aa doi: 10.1109/TGRS.2004.842478 – ident: 2022042712261286629_j_mathm-2020-0001_ref_032_w2aab3b7b2b1b6b1ab1ac32Aa – ident: 2022042712261286629_j_mathm-2020-0001_ref_040_w2aab3b7b2b1b6b1ab1ac40Aa doi: 10.1109/83.217222 – ident: 2022042712261286629_j_mathm-2020-0001_ref_016_w2aab3b7b2b1b6b1ab1ac16Aa doi: 10.1109/JPROC.2012.2197589 – ident: 2022042712261286629_j_mathm-2020-0001_ref_006_w2aab3b7b2b1b6b1ab1ab6Aa doi: 10.1109/TGRS.2003.814625 – ident: 2022042712261286629_j_mathm-2020-0001_ref_007_w2aab3b7b2b1b6b1ab1ab7Aa doi: 10.1109/TGRS.2005.846154 – ident: 2022042712261286629_j_mathm-2020-0001_ref_011_w2aab3b7b2b1b6b1ab1ac11Aa doi: 10.1109/MSP.2014.2298533 – ident: 2022042712261286629_j_mathm-2020-0001_ref_013_w2aab3b7b2b1b6b1ab1ac13Aa doi: 10.1080/01431161.2010.512425 – ident: 2022042712261286629_j_mathm-2020-0001_ref_041_w2aab3b7b2b1b6b1ab1ac41Aa doi: 10.1109/TGRS.2019.2936486 – ident: 2022042712261286629_j_mathm-2020-0001_ref_012_w2aab3b7b2b1b6b1ab1ac12Aa doi: 10.1109/IGARSS.2009.5418096 – ident: 2022042712261286629_j_mathm-2020-0001_ref_024_w2aab3b7b2b1b6b1ab1ac24Aa doi: 10.1109/IGARSS.2019.8898346 – ident: 2022042712261286629_j_mathm-2020-0001_ref_027_w2aab3b7b2b1b6b1ab1ac27Aa doi: 10.1029/2006JE002682 – ident: 2022042712261286629_j_mathm-2020-0001_ref_039_w2aab3b7b2b1b6b1ab1ac39Aa doi: 10.1016/j.patcog.2012.08.011 – ident: 2022042712261286629_j_mathm-2020-0001_ref_035_w2aab3b7b2b1b6b1ab1ac35Aa – ident: 2022042712261286629_j_mathm-2020-0001_ref_008_w2aab3b7b2b1b6b1ab1ab8Aa doi: 10.1109/TGRS.2016.2584107 – ident: 2022042712261286629_j_mathm-2020-0001_ref_022_w2aab3b7b2b1b6b1ab1ac22Aa doi: 10.1007/978-3-642-04898-2_455 – ident: 2022042712261286629_j_mathm-2020-0001_ref_025_w2aab3b7b2b1b6b1ab1ac25Aa doi: 10.1016/0024-3795(77)90069-6 – ident: 2022042712261286629_j_mathm-2020-0001_ref_028_w2aab3b7b2b1b6b1ab1ac28Aa doi: 10.1002/9781118600788 – ident: 2022042712261286629_j_mathm-2020-0001_ref_003_w2aab3b7b2b1b6b1ab1ab3Aa doi: 10.1109/TGRS.2015.2513424 – ident: 2022042712261286629_j_mathm-2020-0001_ref_015_w2aab3b7b2b1b6b1ab1ac15Aa doi: 10.1137/S0895479896305696 – ident: 2022042712261286629_j_mathm-2020-0001_ref_033_w2aab3b7b2b1b6b1ab1ac33Aa – ident: 2022042712261286629_j_mathm-2020-0001_ref_031_w2aab3b7b2b1b6b1ab1ac31Aa – ident: 2022042712261286629_j_mathm-2020-0001_ref_029_w2aab3b7b2b1b6b1ab1ac29Aa doi: 10.1016/j.pss.2012.11.004 – ident: 2022042712261286629_j_mathm-2020-0001_ref_014_w2aab3b7b2b1b6b1ab1ac14Aa doi: 10.1109/TGRS.2010.2048116 – ident: 2022042712261286629_j_mathm-2020-0001_ref_038_w2aab3b7b2b1b6b1ab1ac38Aa doi: 10.1109/TGRS.2015.2503737 |
| SSID | ssib044603931 ssib020483505 ssib022702161 |
| Score | 2.090734 |
| Snippet | Hyperspectral Image (HSI) classification refers to classifying hyperspectral data into features, where labels are given to pixels sharing the same features,... |
| SourceID | hal crossref walterdegruyter |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | 15A69 94A08 Attribute Profiles Computer Science Hyperspectral Imagery Image Processing Mathematical Morphology Remote Sensing Image Scene Classification Tensor Decomposition |
| Title | Hyperspectral Image Classification Based on Mathematical Morphology and Tensor Decomposition |
| URI | https://www.degruyter.com/doi/10.1515/mathm-2020-0001 https://hal.science/hal-02401272 |
| Volume | 4 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2353-3390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib020483505 issn: 2353-3390 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWWwoFLBQLEloIsxIGLIYmTODkuULRItOphkXpAihzbYZG62SrtLu2Fv8PfZMb25mOrlQCJSxRF8cjyvMx44jczhLyqsEc0RFYsFalicSIFk2VmmBJSp5yLRHFtm02Ik5Ps7Cw_HY1-bXJh1ueirrPr6_ziv6oanoGyMXX2L9TdCoUHcA9KhyuoHa5_pPgpRJYugRJz7z8tkJRjW18iKcip-x24Lo3HBMdt0VZM0V3CmnclmWYQ4C4bMEjIOvfUrv5WdtdY5vP9rZBJ73y8I-usbB8pGDSXC6l7OpcufWjVLAGOrh2STyJZOHbAKXhxT9f1vyqiYOtXxQfAfbO6weKPyJZxHsiauognnHHuGodu7HJ8C37OxoY9Z-3OdG65gcRWzIAlmC-Ym0jg5zEouL3lCFt6IgZGIKKwAgoUYM_oY8whvxuJJEfu4PHPo43hwuLHPOkMZ4RJfmGXMAwhN6ZAh760FIh-uzW3wa7ozhw5ufs_LF9Cm29uzXrbntkDsu_jFTpxOHtIRqZ-RL4OMEYtxugQY9RijMJNHye0wwkFeFCHMTrA2GPy5ePR7P2U-TYdTEUiC1muskDpKNQl8u9MWoaBriqeBrIMsyDWWSpK2CiaTOjElIEEuy-jKq9EaWITxYo_IXv1sjZPCYXgupKBUHmVQKghcTcpYUccVwr8hgzKMXmzWaZC-Rr22ErlvNihsjF53Q64cOVbdr_6Eta9fQvLrk8nnwt8hnUAw0hEaz4mfEsthf_0L3fJBdQc_NOoZ-R-9xEdkr2rZmWek3tqffX9snlhAfgbASS3yw |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperspectral+Image+Classification+Based+on+Mathematical+Morphology+and+Tensor+Decomposition&rft.jtitle=Mathematical+Morphology+-+Theory+and+Applications&rft.au=Jouni%2C+Mohamad&rft.au=Mura%2C+Mauro+Dalla&rft.au=Comon%2C+Pierre&rft.date=2020-01-01&rft.pub=De+Gruyter+Open&rft.eissn=2353-3390&rft.volume=4&rft.issue=1&rft.spage=1&rft.epage=30&rft_id=info:doi/10.1515%2Fmathm-2020-0001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_mathm_2020_0001411 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2353-3390&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2353-3390&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2353-3390&client=summon |