Integrated Commonsense Reasoning and Deep Learning for Transparent Decision Making in Robotics

A robot’s ability to provide explanatory descriptions of its decisions and beliefs promotes effective collaboration with humans. Providing the desired transparency in decision making is challenging in integrated robot systems that include knowledge-based reasoning methods and data-driven learning me...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:SN computer science Ročník 2; číslo 4; s. 242
Hlavní autori: Mota, Tiago, Sridharan, Mohan, Leonardis, Aleš
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Singapore Springer Singapore 01.07.2021
Springer Nature B.V
Predmet:
ISSN:2662-995X, 2661-8907
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A robot’s ability to provide explanatory descriptions of its decisions and beliefs promotes effective collaboration with humans. Providing the desired transparency in decision making is challenging in integrated robot systems that include knowledge-based reasoning methods and data-driven learning methods. As a step towards addressing this challenge, our architecture combines the complementary strengths of non-monotonic logical reasoning with incomplete commonsense domain knowledge, deep learning, and inductive learning. During reasoning and learning, the architecture enables a robot to provide on-demand explanations of its decisions, the evolution of associated beliefs, and the outcomes of hypothetical actions, in the form of relational descriptions of relevant domain objects, attributes, and actions. The architecture’s capabilities are illustrated and evaluated in the context of scene understanding tasks and planning tasks performed using simulated images and images from a physical robot manipulating tabletop objects. Experimental results indicate the ability to reliably acquire and merge new information about the domain in the form of constraints, preconditions, and effects of actions, and to provide accurate explanations in the presence of noisy sensing and actuation.
AbstractList A robot’s ability to provide explanatory descriptions of its decisions and beliefs promotes effective collaboration with humans. Providing the desired transparency in decision making is challenging in integrated robot systems that include knowledge-based reasoning methods and data-driven learning methods. As a step towards addressing this challenge, our architecture combines the complementary strengths of non-monotonic logical reasoning with incomplete commonsense domain knowledge, deep learning, and inductive learning. During reasoning and learning, the architecture enables a robot to provide on-demand explanations of its decisions, the evolution of associated beliefs, and the outcomes of hypothetical actions, in the form of relational descriptions of relevant domain objects, attributes, and actions. The architecture’s capabilities are illustrated and evaluated in the context of scene understanding tasks and planning tasks performed using simulated images and images from a physical robot manipulating tabletop objects. Experimental results indicate the ability to reliably acquire and merge new information about the domain in the form of constraints, preconditions, and effects of actions, and to provide accurate explanations in the presence of noisy sensing and actuation.
ArticleNumber 242
Author Sridharan, Mohan
Mota, Tiago
Leonardis, Aleš
Author_xml – sequence: 1
  givenname: Tiago
  orcidid: 0000-0002-2339-0270
  surname: Mota
  fullname: Mota, Tiago
  organization: Electrical and Computer Engineering, The University of Auckland
– sequence: 2
  givenname: Mohan
  orcidid: 0000-0001-9922-8969
  surname: Sridharan
  fullname: Sridharan, Mohan
  email: m.sridharan@bham.ac.uk
  organization: School of Computer Science, University of Birmingham
– sequence: 3
  givenname: Aleš
  orcidid: 0000-0003-0773-3277
  surname: Leonardis
  fullname: Leonardis, Aleš
  organization: School of Computer Science, University of Birmingham
BookMark eNp9kE9LAzEQxYNUsNZ-AU8Lnldns8lmc5T6r1ARSgVPhnR3UlLbpCbbg9_etCsIHoTAhMz7Td68czJw3iEhlwVcFwDiJjIqhcyBFjkAF2UOJ2RIq6rIawlicLzTXEr-dkbGMa4BgHJgrOJD8j51Ha6C7rDNJn679S5iOtkcdfTOulWmXZvdIe6yGepwfDE-ZIugXdzpgK5L3cZG6132rD8OfeuyuV_6zjbxgpwavYk4_qkj8vpwv5g85bOXx-nkdpY3VNSQNy1P7mWDqGUpWsoqVi4pNVKA4KZmhgtOGRbUMKANgBFGtwxK0EVt0IhyRK76ubvgP_cYO7X2--DSl4rKsqZVWrdOqrpXNcHHGNCoxna6S9a7oO1GFaAOgao-UJUsqWOgChJK_6C7YLc6fP0PlT0Uk9itMPy6-of6BimYidY
CitedBy_id crossref_primary_10_1007_s12369_024_01148_8
crossref_primary_10_1016_j_artint_2023_103987
crossref_primary_10_1177_02783649241281369
crossref_primary_10_1109_ACCESS_2024_3465873
crossref_primary_10_1080_02529203_2022_2122207
Cites_doi 10.1017/CBO9781139342124
10.1017/S1471068416000260
10.1016/0004-3702(87)90063-4
10.1037/1076-898X.6.2.104
10.1109/5.726791
10.1017/S1471068418000534
10.1080/11663081.2013.798954
10.1016/B978-1-55860-335-6.50019-2
10.1016/j.datak.2007.10.006
10.24963/ijcai.2018/1
10.1016/j.knosys.2010.12.001
10.15607/RSS.2019.XV.077
10.1016/j.artint.2018.07.007
10.1007/s13218-018-0544-x
10.1609/icaps.v24i1.13664
10.1007/978-3-030-66412-1_14
10.24963/ijcai.2018/266
10.1613/jair.1.11524
10.1109/MIS.2017.3121552
10.1037/0022-3514.65.3.429
10.24963/ijcai.2019/932
10.1109/ICRA.2017.7989155
10.1007/s13218-019-00616-y
10.7551/mitpress/7688.001.0001
10.1145/219717.219748
10.1145/2939672.2939778
10.1109/ICDL49984.2021.9515605
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s42979-021-00573-0
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Computer Science Database (NC LIVE)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2661-8907
ExternalDocumentID 10_1007_s42979_021_00573_0
GrantInformation_xml – fundername: U.S. Office of Naval Research Science of Autonomy
  grantid: N00014-17-1-2434
– fundername: Asian Office of Aerospace Research and Development
  grantid: FA2386-16-1-4071
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABHQN
ABJNI
ABMQK
ABTEG
ABTKH
ABWNU
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AFBBN
AFKRA
AFQWF
AGMZJ
AGQEE
AGRTI
AIGIU
AILAN
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ARAPS
BAPOH
BENPR
BGLVJ
BSONS
C6C
CCPQU
DPUIP
EBLON
EBS
EJD
FIGPU
FNLPD
GGCAI
GNWQR
HCIFZ
IKXTQ
IWAJR
JZLTJ
K7-
LLZTM
NPVJJ
NQJWS
OK1
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
2JN
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
KOV
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c2780-cd50219ceea937d24643b22f97075f84f57524e12f402c00f7fad4030a18fef73
IEDL.DBID RSV
ISSN 2662-995X
IngestDate Wed Nov 05 14:56:36 EST 2025
Sat Nov 29 05:16:49 EST 2025
Tue Nov 18 22:23:16 EST 2025
Fri Feb 21 02:48:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Non-monotonic logical reasoning
Deep learning
Scene understanding
Explainable reasoning and learning
Robotics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2780-cd50219ceea937d24643b22f97075f84f57524e12f402c00f7fad4030a18fef73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9922-8969
0000-0003-0773-3277
0000-0002-2339-0270
OpenAccessLink https://link.springer.com/10.1007/s42979-021-00573-0
PQID 2938260448
PQPubID 6623307
ParticipantIDs proquest_journals_2938260448
crossref_citationtrail_10_1007_s42979_021_00573_0
crossref_primary_10_1007_s42979_021_00573_0
springer_journals_10_1007_s42979_021_00573_0
PublicationCentury 2000
PublicationDate 20210700
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 7
  year: 2021
  text: 20210700
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Kolkata
PublicationTitle SN computer science
PublicationTitleAbbrev SN COMPUT. SCI
PublicationYear 2021
Publisher Springer Singapore
Springer Nature B.V
Publisher_xml – name: Springer Singapore
– name: Springer Nature B.V
References Someya Y. Lemma list for English language. 1998.
Borgo R, Cashmore M, Magazzeni D. Towards providing explanations for AI planner decisions. In: IJCAI workshop on explainable artificial intelligence, pp. 11–17. 2018.
GelfondMInclezanDSome properties of system descriptions of ALd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AL_d$$\end{document}J Appl Non Class Logics Spec Issue Equilib Logic Answ Set Programm.2013231–210512010.1080/11663081.2013.798954
Law M, Russo A, Broda K. The ILASP system for inductive learning of answer set program. Technical report on arXiV. 2020. https://arxiv.org/abs/2005.00904.
Yi K, Wu J, Gan C, Torralba A, Kohli P, Tenenbaum JB. Neural-symbolic VQA: disentangling reasoning from vision and language understanding. In: Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, and Garnett R. editors. Advances in neural information processing systems. Montreal, Canada. 2018.
SridharanMMeadowsBTowards a theory of explanations for human-robot collaborationKunstliche Intelligenz201933433134210.1007/s13218-019-00616-y
SridharanMGelfondMZhangSWyattJREBA: a refinement-based architecture for knowledge representation and reasoning in roboticsJ Artif Intell Res20196587180399043610.1613/jair.1.11524
Koh PW, Liang P. Understanding black-box predictions via influence functions. In: International conference on machine learning. pp. 1885–1894. 2017.
LeCunYBottouLBengioYHaffnerPGradient-based learning applied to document recognitionProc IEEE.199886112278232410.1109/5.726791
Mota T, Sridharan M. Commonsense reasoning and knowledge acquisition to guide deep learning on robots. In: Robotics science and systems. 2019.
Assaf R, Schumann A. Explainable deep neural networks for multivariate time series predictions. In: International joint conference on artificial intelligence, Macao, China, pp. 6488–6490. 2019.
Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Neural information processing systems, pp. 1097–1105. 2012.
SamekWWiegandTMüllerKRExplainable artificial intelligence: understanding, visualizing and interpreting deep learning ModelsITU J ICT Discov Impact Artif Intell Commun Netw Serv20171110
GelfondMKahlYKnowledge representation, reasoning and the design of intelligent agents2014CambridgeCambridge University Press10.1017/CBO9781139342124
Zhang Y, Sreedharan S, Kulkarni A, Chakraborti T, Zhuo HH, Kambhampati S. Plan explicability and predictability for robot task planning. In: Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R editors. International conference on robotics and automation, vol. 31, pp. 313–1320. 2017.
WinstonPHHolmesDThe genesis enterprise: taking artificial intelligence to another level via a computational account of human story understandingComputational models of human intelligence report 12018CambridgeMassachusetts Institute of Technology
LairdJEThe soar cognitive architecture2012CambridgeThe MIT Press10.7551/mitpress/7688.001.0001
Fox M, Long D, Magazzeni D. Explainable planning. In: IJCAI workshop on explainable AI. 2017.
FriedmanMExplanation and scientific understandingPhilosophy1974711519
de KleerJWilliamsBCDiagnosing multiple faultsArtif Intell.1987329713010.1016/0004-3702(87)90063-4
Ribeiro M, Singh S, Guestrin C. Why should I trust you? Explaining the predictions of any classifier. In: International conference on knowledge discovery and data mining, pp. 1135–1144. 2016.
LangleyPMeadowsBSridharanMChoiDExplainable agency for intelligent autonomous systemsInnovative applications of artificial intelligence2017CambridgeAAAI Press
ReadSJMarcus-NewhallAExplanatory coherence in social explanations: a parallel distributed processing accountPers Soc Psychol.199365342910.1037/0022-3514.65.3.429
Bercher P, Biundo S, Geier T, Hoernle T, Nothdurft F, Richter F, Schattenberg B. Plan, repair, execute, explain - how planning helps to assemble your home theater. In: Twenty-fourth international conference on automated planning and scheduling. 2014
MillerGAWordNet: a lexical database for EnglishCommun ACM.19953811394110.1145/219717.219748
MillerTExplanations in artificial intelligence: insights from the social sciencesArtif Intell.2019267138387451110.1016/j.artint.2018.07.007
KontopoulosEBassiliadesNAntoniouGVisualizing semantic web proofs of defeasible logic in the dr-device systemKnowl Based Syst.201124340641910.1016/j.knosys.2010.12.001
Anjomshoae S, Najjar A, Calvaresi D, Framling K. Explainable agents and robots: results from a systematic literature review. In: International conference on autonomous agents and multiagent systems. Montreal, Canada. 2019.
FandinnoJSchulzCAnswering the “Why” in answer set programming: a survey of explanation approachesTheory and Practice of Logic Programming2019192114203391236910.1017/S1471068418000534
LewandowskySMundyMTanGThe dynamics of trust: comparing humans to automationJ Exp Psychol Appl.20006210410.1037/1076-898X.6.2.104
KatzourisNArtikisAPaliourasGOnline learning of event definitionsTheory Pract Logic Programm.2016165–6817833356935110.1017/S1471068416000260
MenziesPBeebeeHZaltaENCounterfactual theories of causationThe Stanford encyclopedia of philosophy20202020StanfordStanford University
Mota T, Sridharan M. Incrementally grounding expressions for spatial relations between objects. In: International joint conference on artificial intelligence, pp. 1928–1934. 2018.
LairdJEGluckKAndersonJForbusKDJenkinsOCLebiereCSalvucciDScheutzMThomazATraftonGWrayREMohanSKirkJRInteractive task learningIEEE Intell Syst.201732462110.1109/MIS.2017.3121552
FerrandGLessaintWTessierAExplanations and proof treesComput. Inform.2006251001102122476961132.68677
Gil Y. Learning by experimentation: incremental refinement of incomplete planning domains. In: International conference on machine learning, pp. 87–95. 1994.
McGuinness DL, Glass A, Wolverton M, Da Silva PP. Explaining task processing in cognitive assistants that learn. In: AAAI spring symposium: interaction challenges for intelligent assistants, pp. 80–87. 2007.
Norcliffe-Brown W, Vafeais E, Parisot S. Learning conditioned graph structures for interpretable visual question answering. In: Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R. editors. Advances in neural information processing systems, vol. 31. Montreal, Canada. 2018.
Mota T, Sridharan M. Scene understanding, reasoning, and explanation generation. 2020. https://github.com/tmot987/Scenes-Understanding
Chai JY, Gao Q, She L, Yang S, Saba-Sadiya S, Xu G. Language to action: towards interactive task learning with physical agents. In: International joint conference on artificial intelligence. 2018.
Mota T, Sridharan M. Answer me this: constructing disambiguation queries for explanation generation in robotics. In: Workshop of the UK planning and scheduling special interest group. 2020.
SridharanMMeadowsBKnowledge representation and interactive learning of domain knowledge for human-robot collaborationAdv Cogn Syst.20187120
Mota T, Sridharan M. Commonsense reasoning and deep learning for transparent decision making in robotics. In: European conference on multiagent systems. 2020.
AntoniouGBikakisADimaresisNGenetzakisMGeorgalisGGovernatoriGKarouzakiEKazepisNKosmadakisDKritsotakisMProof explanation for a nonmonotonic semantic web rules languageData Knowl. Eng.200864366268710.1016/j.datak.2007.10.006
ErdemEPatogluVApplications of ASP in roboticsKunstliche Intelligenz2018322–314314910.1007/s13218-018-0544-x
J Fandinno (573_CR8) 2019; 19
573_CR6
573_CR5
573_CR4
573_CR34
573_CR3
J de Kleer (573_CR16) 1987; 32
573_CR35
573_CR10
573_CR32
573_CR1
573_CR33
573_CR30
E Kontopoulos (573_CR18) 2011; 24
573_CR31
P Menzies (573_CR27) 2020
G Ferrand (573_CR9) 2006; 25
Y LeCun (573_CR24) 1998; 86
N Katzouris (573_CR15) 2016; 16
M Gelfond (573_CR12) 2013; 23
M Sridharan (573_CR42) 2019; 33
573_CR26
T Miller (573_CR29) 2019; 267
PH Winston (573_CR43) 2018
E Erdem (573_CR7) 2018; 32
P Langley (573_CR22) 2017
W Samek (573_CR38) 2017; 1
M Friedman (573_CR11) 1974; 71
GA Miller (573_CR28) 1995; 38
M Sridharan (573_CR41) 2018; 7
S Lewandowsky (573_CR25) 2000; 6
G Antoniou (573_CR2) 2008; 64
573_CR23
573_CR45
573_CR44
SJ Read (573_CR36) 1993; 65
JE Laird (573_CR20) 2012
573_CR19
573_CR17
573_CR39
573_CR14
M Gelfond (573_CR13) 2014
573_CR37
M Sridharan (573_CR40) 2019; 65
JE Laird (573_CR21) 2017; 32
References_xml – reference: LewandowskySMundyMTanGThe dynamics of trust: comparing humans to automationJ Exp Psychol Appl.20006210410.1037/1076-898X.6.2.104
– reference: Koh PW, Liang P. Understanding black-box predictions via influence functions. In: International conference on machine learning. pp. 1885–1894. 2017.
– reference: LairdJEThe soar cognitive architecture2012CambridgeThe MIT Press10.7551/mitpress/7688.001.0001
– reference: Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Neural information processing systems, pp. 1097–1105. 2012.
– reference: ReadSJMarcus-NewhallAExplanatory coherence in social explanations: a parallel distributed processing accountPers Soc Psychol.199365342910.1037/0022-3514.65.3.429
– reference: FriedmanMExplanation and scientific understandingPhilosophy1974711519
– reference: Mota T, Sridharan M. Commonsense reasoning and knowledge acquisition to guide deep learning on robots. In: Robotics science and systems. 2019.
– reference: LairdJEGluckKAndersonJForbusKDJenkinsOCLebiereCSalvucciDScheutzMThomazATraftonGWrayREMohanSKirkJRInteractive task learningIEEE Intell Syst.201732462110.1109/MIS.2017.3121552
– reference: Mota T, Sridharan M. Incrementally grounding expressions for spatial relations between objects. In: International joint conference on artificial intelligence, pp. 1928–1934. 2018.
– reference: Ribeiro M, Singh S, Guestrin C. Why should I trust you? Explaining the predictions of any classifier. In: International conference on knowledge discovery and data mining, pp. 1135–1144. 2016.
– reference: SridharanMMeadowsBKnowledge representation and interactive learning of domain knowledge for human-robot collaborationAdv Cogn Syst.20187120
– reference: FerrandGLessaintWTessierAExplanations and proof treesComput. Inform.2006251001102122476961132.68677
– reference: Mota T, Sridharan M. Commonsense reasoning and deep learning for transparent decision making in robotics. In: European conference on multiagent systems. 2020.
– reference: Zhang Y, Sreedharan S, Kulkarni A, Chakraborti T, Zhuo HH, Kambhampati S. Plan explicability and predictability for robot task planning. In: Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R editors. International conference on robotics and automation, vol. 31, pp. 313–1320. 2017.
– reference: de KleerJWilliamsBCDiagnosing multiple faultsArtif Intell.1987329713010.1016/0004-3702(87)90063-4
– reference: FandinnoJSchulzCAnswering the “Why” in answer set programming: a survey of explanation approachesTheory and Practice of Logic Programming2019192114203391236910.1017/S1471068418000534
– reference: Bercher P, Biundo S, Geier T, Hoernle T, Nothdurft F, Richter F, Schattenberg B. Plan, repair, execute, explain - how planning helps to assemble your home theater. In: Twenty-fourth international conference on automated planning and scheduling. 2014
– reference: LangleyPMeadowsBSridharanMChoiDExplainable agency for intelligent autonomous systemsInnovative applications of artificial intelligence2017CambridgeAAAI Press
– reference: MillerGAWordNet: a lexical database for EnglishCommun ACM.19953811394110.1145/219717.219748
– reference: Chai JY, Gao Q, She L, Yang S, Saba-Sadiya S, Xu G. Language to action: towards interactive task learning with physical agents. In: International joint conference on artificial intelligence. 2018.
– reference: ErdemEPatogluVApplications of ASP in roboticsKunstliche Intelligenz2018322–314314910.1007/s13218-018-0544-x
– reference: KatzourisNArtikisAPaliourasGOnline learning of event definitionsTheory Pract Logic Programm.2016165–6817833356935110.1017/S1471068416000260
– reference: SridharanMMeadowsBTowards a theory of explanations for human-robot collaborationKunstliche Intelligenz201933433134210.1007/s13218-019-00616-y
– reference: Fox M, Long D, Magazzeni D. Explainable planning. In: IJCAI workshop on explainable AI. 2017.
– reference: KontopoulosEBassiliadesNAntoniouGVisualizing semantic web proofs of defeasible logic in the dr-device systemKnowl Based Syst.201124340641910.1016/j.knosys.2010.12.001
– reference: Gil Y. Learning by experimentation: incremental refinement of incomplete planning domains. In: International conference on machine learning, pp. 87–95. 1994.
– reference: McGuinness DL, Glass A, Wolverton M, Da Silva PP. Explaining task processing in cognitive assistants that learn. In: AAAI spring symposium: interaction challenges for intelligent assistants, pp. 80–87. 2007.
– reference: SridharanMGelfondMZhangSWyattJREBA: a refinement-based architecture for knowledge representation and reasoning in roboticsJ Artif Intell Res20196587180399043610.1613/jair.1.11524
– reference: SamekWWiegandTMüllerKRExplainable artificial intelligence: understanding, visualizing and interpreting deep learning ModelsITU J ICT Discov Impact Artif Intell Commun Netw Serv20171110
– reference: Norcliffe-Brown W, Vafeais E, Parisot S. Learning conditioned graph structures for interpretable visual question answering. In: Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R. editors. Advances in neural information processing systems, vol. 31. Montreal, Canada. 2018.
– reference: GelfondMKahlYKnowledge representation, reasoning and the design of intelligent agents2014CambridgeCambridge University Press10.1017/CBO9781139342124
– reference: AntoniouGBikakisADimaresisNGenetzakisMGeorgalisGGovernatoriGKarouzakiEKazepisNKosmadakisDKritsotakisMProof explanation for a nonmonotonic semantic web rules languageData Knowl. Eng.200864366268710.1016/j.datak.2007.10.006
– reference: Anjomshoae S, Najjar A, Calvaresi D, Framling K. Explainable agents and robots: results from a systematic literature review. In: International conference on autonomous agents and multiagent systems. Montreal, Canada. 2019.
– reference: Borgo R, Cashmore M, Magazzeni D. Towards providing explanations for AI planner decisions. In: IJCAI workshop on explainable artificial intelligence, pp. 11–17. 2018.
– reference: MillerTExplanations in artificial intelligence: insights from the social sciencesArtif Intell.2019267138387451110.1016/j.artint.2018.07.007
– reference: Assaf R, Schumann A. Explainable deep neural networks for multivariate time series predictions. In: International joint conference on artificial intelligence, Macao, China, pp. 6488–6490. 2019.
– reference: LeCunYBottouLBengioYHaffnerPGradient-based learning applied to document recognitionProc IEEE.199886112278232410.1109/5.726791
– reference: Someya Y. Lemma list for English language. 1998.
– reference: Yi K, Wu J, Gan C, Torralba A, Kohli P, Tenenbaum JB. Neural-symbolic VQA: disentangling reasoning from vision and language understanding. In: Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, and Garnett R. editors. Advances in neural information processing systems. Montreal, Canada. 2018.
– reference: GelfondMInclezanDSome properties of system descriptions of ALd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AL_d$$\end{document}J Appl Non Class Logics Spec Issue Equilib Logic Answ Set Programm.2013231–210512010.1080/11663081.2013.798954
– reference: Mota T, Sridharan M. Answer me this: constructing disambiguation queries for explanation generation in robotics. In: Workshop of the UK planning and scheduling special interest group. 2020.
– reference: WinstonPHHolmesDThe genesis enterprise: taking artificial intelligence to another level via a computational account of human story understandingComputational models of human intelligence report 12018CambridgeMassachusetts Institute of Technology
– reference: Law M, Russo A, Broda K. The ILASP system for inductive learning of answer set program. Technical report on arXiV. 2020. https://arxiv.org/abs/2005.00904.
– reference: MenziesPBeebeeHZaltaENCounterfactual theories of causationThe Stanford encyclopedia of philosophy20202020StanfordStanford University
– reference: Mota T, Sridharan M. Scene understanding, reasoning, and explanation generation. 2020. https://github.com/tmot987/Scenes-Understanding
– volume-title: Knowledge representation, reasoning and the design of intelligent agents
  year: 2014
  ident: 573_CR13
  doi: 10.1017/CBO9781139342124
– volume: 16
  start-page: 817
  issue: 5–6
  year: 2016
  ident: 573_CR15
  publication-title: Theory Pract Logic Programm.
  doi: 10.1017/S1471068416000260
– volume: 32
  start-page: 97
  year: 1987
  ident: 573_CR16
  publication-title: Artif Intell.
  doi: 10.1016/0004-3702(87)90063-4
– volume: 6
  start-page: 104
  issue: 2
  year: 2000
  ident: 573_CR25
  publication-title: J Exp Psychol Appl.
  doi: 10.1037/1076-898X.6.2.104
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 573_CR24
  publication-title: Proc IEEE.
  doi: 10.1109/5.726791
– volume: 19
  start-page: 114
  issue: 2
  year: 2019
  ident: 573_CR8
  publication-title: Theory and Practice of Logic Programming
  doi: 10.1017/S1471068418000534
– ident: 573_CR1
– volume: 23
  start-page: 105
  issue: 1–2
  year: 2013
  ident: 573_CR12
  publication-title: J Appl Non Class Logics Spec Issue Equilib Logic Answ Set Programm.
  doi: 10.1080/11663081.2013.798954
– ident: 573_CR26
– ident: 573_CR14
  doi: 10.1016/B978-1-55860-335-6.50019-2
– volume: 64
  start-page: 662
  issue: 3
  year: 2008
  ident: 573_CR2
  publication-title: Data Knowl. Eng.
  doi: 10.1016/j.datak.2007.10.006
– ident: 573_CR6
  doi: 10.24963/ijcai.2018/1
– ident: 573_CR19
– volume: 24
  start-page: 406
  issue: 3
  year: 2011
  ident: 573_CR18
  publication-title: Knowl Based Syst.
  doi: 10.1016/j.knosys.2010.12.001
– ident: 573_CR31
  doi: 10.15607/RSS.2019.XV.077
– volume: 267
  start-page: 1
  year: 2019
  ident: 573_CR29
  publication-title: Artif Intell.
  doi: 10.1016/j.artint.2018.07.007
– volume: 7
  start-page: 1
  year: 2018
  ident: 573_CR41
  publication-title: Adv Cogn Syst.
– volume: 32
  start-page: 143
  issue: 2–3
  year: 2018
  ident: 573_CR7
  publication-title: Kunstliche Intelligenz
  doi: 10.1007/s13218-018-0544-x
– ident: 573_CR4
  doi: 10.1609/icaps.v24i1.13664
– ident: 573_CR33
  doi: 10.1007/978-3-030-66412-1_14
– ident: 573_CR17
– ident: 573_CR30
  doi: 10.24963/ijcai.2018/266
– ident: 573_CR34
– volume: 65
  start-page: 87
  year: 2019
  ident: 573_CR40
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.1.11524
– volume: 32
  start-page: 6
  issue: 4
  year: 2017
  ident: 573_CR21
  publication-title: IEEE Intell Syst.
  doi: 10.1109/MIS.2017.3121552
– volume: 65
  start-page: 429
  issue: 3
  year: 1993
  ident: 573_CR36
  publication-title: Pers Soc Psychol.
  doi: 10.1037/0022-3514.65.3.429
– ident: 573_CR3
  doi: 10.24963/ijcai.2019/932
– ident: 573_CR10
– ident: 573_CR45
  doi: 10.1109/ICRA.2017.7989155
– volume: 33
  start-page: 331
  issue: 4
  year: 2019
  ident: 573_CR42
  publication-title: Kunstliche Intelligenz
  doi: 10.1007/s13218-019-00616-y
– volume-title: The soar cognitive architecture
  year: 2012
  ident: 573_CR20
  doi: 10.7551/mitpress/7688.001.0001
– ident: 573_CR23
– volume-title: Computational models of human intelligence report 1
  year: 2018
  ident: 573_CR43
– ident: 573_CR44
– volume: 25
  start-page: 1001
  year: 2006
  ident: 573_CR9
  publication-title: Comput. Inform.
– volume: 38
  start-page: 39
  issue: 11
  year: 1995
  ident: 573_CR28
  publication-title: Commun ACM.
  doi: 10.1145/219717.219748
– ident: 573_CR37
  doi: 10.1145/2939672.2939778
– volume: 71
  start-page: 5
  issue: 1
  year: 1974
  ident: 573_CR11
  publication-title: Philosophy
– ident: 573_CR5
– volume-title: The Stanford encyclopedia of philosophy
  year: 2020
  ident: 573_CR27
– ident: 573_CR32
  doi: 10.1109/ICDL49984.2021.9515605
– ident: 573_CR35
– volume: 1
  start-page: 1
  year: 2017
  ident: 573_CR38
  publication-title: ITU J ICT Discov Impact Artif Intell Commun Netw Serv
– ident: 573_CR39
– volume-title: Innovative applications of artificial intelligence
  year: 2017
  ident: 573_CR22
SSID ssj0002504465
Score 2.2959278
Snippet A robot’s ability to provide explanatory descriptions of its decisions and beliefs promotes effective collaboration with humans. Providing the desired...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 242
SubjectTerms Actuation
Advances in Multi-Agent Systems Research: EUMAS 2020 Extended Selected Papers
Algorithms
Classification
Cognition & reasoning
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Decision making
Deep learning
Descriptions
Image manipulation
Information Systems and Communication Service
Knowledge representation
Logic
Original Research
Pattern Recognition and Graphics
Planning
Reasoning
Robot learning
Robotics
Robots
Scene analysis
Semantic web
Software Engineering/Programming and Operating Systems
Vision
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NSwMxEA1aPXjxAxWrVXLwpsFsum02JxG16MFSikLx4JJPKci2dqu_30k226KgF2Fv2Q1hJ5l5SWbeQ-g04047ZQ0BSERJmhlYc8wo0hZtxzOlVDeKTfB-PxuNxCAeuJUxrbL2icFRm4n2Z-QXEJYACVPYTVxO34lXjfK3q1FCYxWteZYEL90w6Dwvzlg8PVca1CQhDDEiRGcU62ZC9Ry4Yi6Iz1EItICEfo9NS8D54440hJ7e1n8HvY02I-jEV9Us2UErtthFL_c1U4TBvkzEp1XDg4dWluGMFsvC4BtrpziSsL5iQLi4okP3NWRzaK0UevBDELXC4wIPJ2riqZ_30FPv9vH6jkS1BaIZzyjRpgO_QkDQlABZDEsBqyjGnOCAKlyWOgB2LLUJc7Dl1JQ67qRJwUfIJHPW8fY-ahSTwh4g7KigSqZ-6-dSLpnoWme7iiVKQEiWuomS-j_nOlKRe0WMt3xBohxsk8OA8mCbnDbR2eKbaUXE8efbrdogeVyUZb60RhOd1yZdNv_e2-HfvR2hDRZmkU_ibaHGfPZhj9G6_pyPy9lJmJJfe47mBg
  priority: 102
  providerName: ProQuest
Title Integrated Commonsense Reasoning and Deep Learning for Transparent Decision Making in Robotics
URI https://link.springer.com/article/10.1007/s42979-021-00573-0
https://www.proquest.com/docview/2938260448
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2662-995X
  databaseCode: P5Z
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2662-995X
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Computer Science Database (NC LIVE)
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2662-995X
  databaseCode: K7-
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2662-995X
  databaseCode: RSV
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2662-995X
  databaseCode: RSV
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB609eDF-sRqLTl408A23TbJ0UeLIpZSHxQPLpvdRAqyLd3q73eSZlsUFRSWvWw2hLzmm2Tm-wCOBTeJUTqlCIkCGooU1xxLFW3KpuFCKdX2YhO81xPDoez7pLC8iHYvriTdTr1IdsOdk0tqQwocix9FR72M5k5YwYbB3ePiZMWScoVOQxKND6NStoY-W-b7aj5bpCXM_HIz6gxOt_K_pm7ChgeY5Gw-I7ZgRWfbUCnEG4hfyzvwfF0QRaTEZonYqGp8yEDHuTuiJXGWkkutJ8RzsL4QBLhkzoZuU8hm-HUu0ENunaYVGWVkMFZjy_y8Cw_dzv3FFfViCzRhXAQ0SVvYXok2M0bEkrIQoYpizEiOoMKI0CCuY6FuMIMeZxIEhps4DXGLiBvCaMObe1DKxpneB2ICGag4tJ6fCXnMZFsb3VasoSRa5DipQqPo8CjxTORWEOM1WnAouw6MsEGR68AoqMLJ4p_JnIfj19K1YhwjvybzCIEN-lI4N0QVTotxW37-ubaDvxU_hHXmht7G9NagNJu-6SNYS95no3xah_J5p9cf1GH1hlN891tPdTd_PwB5T-Wm
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB58gV58oOL6zEFPGsxm46Y5iIgPXFYXEYU9WZsmEUG6q7sq_il_o5O03UVBbx6E3tKGtpmZbyaZ-QZgM5Iuddoaii4RoyIyqHPcaFpTNScjrXW9aDYhW62o3VaXI_BR1sL4tMrSJgZDbTqp3yPfRVhCT5hhNHHQfaK-a5Q_XS1baORi0bTvbxiy9fYbx7i-W5yfnlwfndGiqwBNuYwYTc0e4ppCcEgQmg0XiMmac6ckoqeLhEMHhgtb5Q5Dq5QxJ11iBOpCUo2cdbKG847CuKhF0utVU9LBno6nAxOheyXCHqdK7bWLOp1QrYemXyrqcyICDSFlX7Fw6OB-O5MNUHc6899-0ixMF041Ocy1YA5GbDYPt42SCcMQXwbj08bxIlc26YU9aJJkhhxb2yUFyew9QQ-e5HTvvkauj6N5ByJyEZp2kYeMXHV0x1NbL8DNn3zSIoxlncwuAXFMMZ0IH9o6IROu6tbZuuZVrdDlSNIKVMt1jdOCat13_HiMByTRQRZifKE4yELMKrA9eKabE438evdqKQBxYXR68XD1K7BTitBw-OfZln-fbQMmz64vzuPzRqu5AlM8SLBPWF6Fsf7zi12DifS1_9B7Xg_qQODur0XrE2ACQG8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SRbxYn1itmoM3Dd1N02ZzFGuxqKXUBz25bDaJFGRb2tXf7yT7qIoKIuwt2RCSmcw3ycw3CJ0E3MRGakUAEnmEBQp0jipJmqJpeCClbOfFJni_H4xGYvAhi99FuxdPkllOg2VpStLGVJlGmfgGpygXxIYXOEY_Ak77MrOB9NZfv3ssb1ksQRdz9STBEFEiRGuUZ858P8xn67SAnF9eSZ3x6Vb_P-0NtJ4DT3yeScomWtLJFqoWRR1wruPb6KlXEEgobLNHbLQ1fHioo7m7usVRonBH6ynOuVmfMQBfnLGk29SyFFqzwj341tW6wuMEDydyYhmhd9BD9_L-4orkRRhITHngkVi1YL4CbGkESEZRBhBGUmoEB7BhAmYA71GmfWrAE409z3ATKQZHR-QHRhve3EWVZJLoPYSNJzwZMesRGsYjKtra6LakvhRgqaO4hvxi8cM4Zyi3hTJewpJb2S1gCBMK3QKGXg2dlv9MM36OX3vXiz0Nc12dhwB4wMcCOQlq6KzYw0Xzz6Pt_637MVoddLrhTa9_fYDWqJMCG_ZbR5V09qoP0Ur8lo7nsyMnwu9Whe4E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+Commonsense+Reasoning+and+Deep+Learning+for+Transparent+Decision+Making+in+Robotics&rft.jtitle=SN+computer+science&rft.au=Mota%2C+Tiago&rft.au=Sridharan%2C+Mohan&rft.au=Leonardis%2C+Ale%C5%A1&rft.date=2021-07-01&rft.issn=2662-995X&rft.eissn=2661-8907&rft.volume=2&rft.issue=4&rft_id=info:doi/10.1007%2Fs42979-021-00573-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42979_021_00573_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-995X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-995X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-995X&client=summon