Integrated Commonsense Reasoning and Deep Learning for Transparent Decision Making in Robotics
A robot’s ability to provide explanatory descriptions of its decisions and beliefs promotes effective collaboration with humans. Providing the desired transparency in decision making is challenging in integrated robot systems that include knowledge-based reasoning methods and data-driven learning me...
Uložené v:
| Vydané v: | SN computer science Ročník 2; číslo 4; s. 242 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Singapore
Springer Singapore
01.07.2021
Springer Nature B.V |
| Predmet: | |
| ISSN: | 2662-995X, 2661-8907 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | A robot’s ability to provide explanatory descriptions of its decisions and beliefs promotes effective collaboration with humans. Providing the desired transparency in decision making is challenging in integrated robot systems that include knowledge-based reasoning methods and data-driven learning methods. As a step towards addressing this challenge, our architecture combines the complementary strengths of non-monotonic logical reasoning with incomplete commonsense domain knowledge, deep learning, and inductive learning. During reasoning and learning, the architecture enables a robot to provide on-demand explanations of its decisions, the evolution of associated beliefs, and the outcomes of hypothetical actions, in the form of relational descriptions of relevant domain objects, attributes, and actions. The architecture’s capabilities are illustrated and evaluated in the context of scene understanding tasks and planning tasks performed using simulated images and images from a physical robot manipulating tabletop objects. Experimental results indicate the ability to reliably acquire and merge new information about the domain in the form of constraints, preconditions, and effects of actions, and to provide accurate explanations in the presence of noisy sensing and actuation. |
|---|---|
| AbstractList | A robot’s ability to provide explanatory descriptions of its decisions and beliefs promotes effective collaboration with humans. Providing the desired transparency in decision making is challenging in integrated robot systems that include knowledge-based reasoning methods and data-driven learning methods. As a step towards addressing this challenge, our architecture combines the complementary strengths of non-monotonic logical reasoning with incomplete commonsense domain knowledge, deep learning, and inductive learning. During reasoning and learning, the architecture enables a robot to provide on-demand explanations of its decisions, the evolution of associated beliefs, and the outcomes of hypothetical actions, in the form of relational descriptions of relevant domain objects, attributes, and actions. The architecture’s capabilities are illustrated and evaluated in the context of scene understanding tasks and planning tasks performed using simulated images and images from a physical robot manipulating tabletop objects. Experimental results indicate the ability to reliably acquire and merge new information about the domain in the form of constraints, preconditions, and effects of actions, and to provide accurate explanations in the presence of noisy sensing and actuation. |
| ArticleNumber | 242 |
| Author | Sridharan, Mohan Mota, Tiago Leonardis, Aleš |
| Author_xml | – sequence: 1 givenname: Tiago orcidid: 0000-0002-2339-0270 surname: Mota fullname: Mota, Tiago organization: Electrical and Computer Engineering, The University of Auckland – sequence: 2 givenname: Mohan orcidid: 0000-0001-9922-8969 surname: Sridharan fullname: Sridharan, Mohan email: m.sridharan@bham.ac.uk organization: School of Computer Science, University of Birmingham – sequence: 3 givenname: Aleš orcidid: 0000-0003-0773-3277 surname: Leonardis fullname: Leonardis, Aleš organization: School of Computer Science, University of Birmingham |
| BookMark | eNp9kE9LAzEQxYNUsNZ-AU8Lnldns8lmc5T6r1ARSgVPhnR3UlLbpCbbg9_etCsIHoTAhMz7Td68czJw3iEhlwVcFwDiJjIqhcyBFjkAF2UOJ2RIq6rIawlicLzTXEr-dkbGMa4BgHJgrOJD8j51Ha6C7rDNJn679S5iOtkcdfTOulWmXZvdIe6yGepwfDE-ZIugXdzpgK5L3cZG6132rD8OfeuyuV_6zjbxgpwavYk4_qkj8vpwv5g85bOXx-nkdpY3VNSQNy1P7mWDqGUpWsoqVi4pNVKA4KZmhgtOGRbUMKANgBFGtwxK0EVt0IhyRK76ubvgP_cYO7X2--DSl4rKsqZVWrdOqrpXNcHHGNCoxna6S9a7oO1GFaAOgao-UJUsqWOgChJK_6C7YLc6fP0PlT0Uk9itMPy6-of6BimYidY |
| CitedBy_id | crossref_primary_10_1007_s12369_024_01148_8 crossref_primary_10_1016_j_artint_2023_103987 crossref_primary_10_1177_02783649241281369 crossref_primary_10_1109_ACCESS_2024_3465873 crossref_primary_10_1080_02529203_2022_2122207 |
| Cites_doi | 10.1017/CBO9781139342124 10.1017/S1471068416000260 10.1016/0004-3702(87)90063-4 10.1037/1076-898X.6.2.104 10.1109/5.726791 10.1017/S1471068418000534 10.1080/11663081.2013.798954 10.1016/B978-1-55860-335-6.50019-2 10.1016/j.datak.2007.10.006 10.24963/ijcai.2018/1 10.1016/j.knosys.2010.12.001 10.15607/RSS.2019.XV.077 10.1016/j.artint.2018.07.007 10.1007/s13218-018-0544-x 10.1609/icaps.v24i1.13664 10.1007/978-3-030-66412-1_14 10.24963/ijcai.2018/266 10.1613/jair.1.11524 10.1109/MIS.2017.3121552 10.1037/0022-3514.65.3.429 10.24963/ijcai.2019/932 10.1109/ICRA.2017.7989155 10.1007/s13218-019-00616-y 10.7551/mitpress/7688.001.0001 10.1145/219717.219748 10.1145/2939672.2939778 10.1109/ICDL49984.2021.9515605 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s42979-021-00573-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Computer Science Database (NC LIVE) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2661-8907 |
| ExternalDocumentID | 10_1007_s42979_021_00573_0 |
| GrantInformation_xml | – fundername: U.S. Office of Naval Research Science of Autonomy grantid: N00014-17-1-2434 – fundername: Asian Office of Aerospace Research and Development grantid: FA2386-16-1-4071 |
| GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABECU ABHQN ABJNI ABMQK ABTEG ABTKH ABWNU ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AFBBN AFKRA AFQWF AGMZJ AGQEE AGRTI AIGIU AILAN AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ARAPS BAPOH BENPR BGLVJ BSONS C6C CCPQU DPUIP EBLON EBS EJD FIGPU FNLPD GGCAI GNWQR HCIFZ IKXTQ IWAJR JZLTJ K7- LLZTM NPVJJ NQJWS OK1 PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR 2JN AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION KOV PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c2780-cd50219ceea937d24643b22f97075f84f57524e12f402c00f7fad4030a18fef73 |
| IEDL.DBID | RSV |
| ISSN | 2662-995X |
| IngestDate | Wed Nov 05 14:56:36 EST 2025 Sat Nov 29 05:16:49 EST 2025 Tue Nov 18 22:23:16 EST 2025 Fri Feb 21 02:48:00 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Non-monotonic logical reasoning Deep learning Scene understanding Explainable reasoning and learning Robotics |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2780-cd50219ceea937d24643b22f97075f84f57524e12f402c00f7fad4030a18fef73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9922-8969 0000-0003-0773-3277 0000-0002-2339-0270 |
| OpenAccessLink | https://link.springer.com/10.1007/s42979-021-00573-0 |
| PQID | 2938260448 |
| PQPubID | 6623307 |
| ParticipantIDs | proquest_journals_2938260448 crossref_citationtrail_10_1007_s42979_021_00573_0 crossref_primary_10_1007_s42979_021_00573_0 springer_journals_10_1007_s42979_021_00573_0 |
| PublicationCentury | 2000 |
| PublicationDate | 20210700 2021-07-00 20210701 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 7 year: 2021 text: 20210700 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Kolkata |
| PublicationTitle | SN computer science |
| PublicationTitleAbbrev | SN COMPUT. SCI |
| PublicationYear | 2021 |
| Publisher | Springer Singapore Springer Nature B.V |
| Publisher_xml | – name: Springer Singapore – name: Springer Nature B.V |
| References | Someya Y. Lemma list for English language. 1998. Borgo R, Cashmore M, Magazzeni D. Towards providing explanations for AI planner decisions. In: IJCAI workshop on explainable artificial intelligence, pp. 11–17. 2018. GelfondMInclezanDSome properties of system descriptions of ALd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AL_d$$\end{document}J Appl Non Class Logics Spec Issue Equilib Logic Answ Set Programm.2013231–210512010.1080/11663081.2013.798954 Law M, Russo A, Broda K. The ILASP system for inductive learning of answer set program. Technical report on arXiV. 2020. https://arxiv.org/abs/2005.00904. Yi K, Wu J, Gan C, Torralba A, Kohli P, Tenenbaum JB. Neural-symbolic VQA: disentangling reasoning from vision and language understanding. In: Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, and Garnett R. editors. Advances in neural information processing systems. Montreal, Canada. 2018. SridharanMMeadowsBTowards a theory of explanations for human-robot collaborationKunstliche Intelligenz201933433134210.1007/s13218-019-00616-y SridharanMGelfondMZhangSWyattJREBA: a refinement-based architecture for knowledge representation and reasoning in roboticsJ Artif Intell Res20196587180399043610.1613/jair.1.11524 Koh PW, Liang P. Understanding black-box predictions via influence functions. In: International conference on machine learning. pp. 1885–1894. 2017. LeCunYBottouLBengioYHaffnerPGradient-based learning applied to document recognitionProc IEEE.199886112278232410.1109/5.726791 Mota T, Sridharan M. Commonsense reasoning and knowledge acquisition to guide deep learning on robots. In: Robotics science and systems. 2019. Assaf R, Schumann A. Explainable deep neural networks for multivariate time series predictions. In: International joint conference on artificial intelligence, Macao, China, pp. 6488–6490. 2019. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Neural information processing systems, pp. 1097–1105. 2012. SamekWWiegandTMüllerKRExplainable artificial intelligence: understanding, visualizing and interpreting deep learning ModelsITU J ICT Discov Impact Artif Intell Commun Netw Serv20171110 GelfondMKahlYKnowledge representation, reasoning and the design of intelligent agents2014CambridgeCambridge University Press10.1017/CBO9781139342124 Zhang Y, Sreedharan S, Kulkarni A, Chakraborti T, Zhuo HH, Kambhampati S. Plan explicability and predictability for robot task planning. In: Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R editors. International conference on robotics and automation, vol. 31, pp. 313–1320. 2017. WinstonPHHolmesDThe genesis enterprise: taking artificial intelligence to another level via a computational account of human story understandingComputational models of human intelligence report 12018CambridgeMassachusetts Institute of Technology LairdJEThe soar cognitive architecture2012CambridgeThe MIT Press10.7551/mitpress/7688.001.0001 Fox M, Long D, Magazzeni D. Explainable planning. In: IJCAI workshop on explainable AI. 2017. FriedmanMExplanation and scientific understandingPhilosophy1974711519 de KleerJWilliamsBCDiagnosing multiple faultsArtif Intell.1987329713010.1016/0004-3702(87)90063-4 Ribeiro M, Singh S, Guestrin C. Why should I trust you? Explaining the predictions of any classifier. In: International conference on knowledge discovery and data mining, pp. 1135–1144. 2016. LangleyPMeadowsBSridharanMChoiDExplainable agency for intelligent autonomous systemsInnovative applications of artificial intelligence2017CambridgeAAAI Press ReadSJMarcus-NewhallAExplanatory coherence in social explanations: a parallel distributed processing accountPers Soc Psychol.199365342910.1037/0022-3514.65.3.429 Bercher P, Biundo S, Geier T, Hoernle T, Nothdurft F, Richter F, Schattenberg B. Plan, repair, execute, explain - how planning helps to assemble your home theater. In: Twenty-fourth international conference on automated planning and scheduling. 2014 MillerGAWordNet: a lexical database for EnglishCommun ACM.19953811394110.1145/219717.219748 MillerTExplanations in artificial intelligence: insights from the social sciencesArtif Intell.2019267138387451110.1016/j.artint.2018.07.007 KontopoulosEBassiliadesNAntoniouGVisualizing semantic web proofs of defeasible logic in the dr-device systemKnowl Based Syst.201124340641910.1016/j.knosys.2010.12.001 Anjomshoae S, Najjar A, Calvaresi D, Framling K. Explainable agents and robots: results from a systematic literature review. In: International conference on autonomous agents and multiagent systems. Montreal, Canada. 2019. FandinnoJSchulzCAnswering the “Why” in answer set programming: a survey of explanation approachesTheory and Practice of Logic Programming2019192114203391236910.1017/S1471068418000534 LewandowskySMundyMTanGThe dynamics of trust: comparing humans to automationJ Exp Psychol Appl.20006210410.1037/1076-898X.6.2.104 KatzourisNArtikisAPaliourasGOnline learning of event definitionsTheory Pract Logic Programm.2016165–6817833356935110.1017/S1471068416000260 MenziesPBeebeeHZaltaENCounterfactual theories of causationThe Stanford encyclopedia of philosophy20202020StanfordStanford University Mota T, Sridharan M. Incrementally grounding expressions for spatial relations between objects. In: International joint conference on artificial intelligence, pp. 1928–1934. 2018. LairdJEGluckKAndersonJForbusKDJenkinsOCLebiereCSalvucciDScheutzMThomazATraftonGWrayREMohanSKirkJRInteractive task learningIEEE Intell Syst.201732462110.1109/MIS.2017.3121552 FerrandGLessaintWTessierAExplanations and proof treesComput. Inform.2006251001102122476961132.68677 Gil Y. Learning by experimentation: incremental refinement of incomplete planning domains. In: International conference on machine learning, pp. 87–95. 1994. McGuinness DL, Glass A, Wolverton M, Da Silva PP. Explaining task processing in cognitive assistants that learn. In: AAAI spring symposium: interaction challenges for intelligent assistants, pp. 80–87. 2007. Norcliffe-Brown W, Vafeais E, Parisot S. Learning conditioned graph structures for interpretable visual question answering. In: Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R. editors. Advances in neural information processing systems, vol. 31. Montreal, Canada. 2018. Mota T, Sridharan M. Scene understanding, reasoning, and explanation generation. 2020. https://github.com/tmot987/Scenes-Understanding Chai JY, Gao Q, She L, Yang S, Saba-Sadiya S, Xu G. Language to action: towards interactive task learning with physical agents. In: International joint conference on artificial intelligence. 2018. Mota T, Sridharan M. Answer me this: constructing disambiguation queries for explanation generation in robotics. In: Workshop of the UK planning and scheduling special interest group. 2020. SridharanMMeadowsBKnowledge representation and interactive learning of domain knowledge for human-robot collaborationAdv Cogn Syst.20187120 Mota T, Sridharan M. Commonsense reasoning and deep learning for transparent decision making in robotics. In: European conference on multiagent systems. 2020. AntoniouGBikakisADimaresisNGenetzakisMGeorgalisGGovernatoriGKarouzakiEKazepisNKosmadakisDKritsotakisMProof explanation for a nonmonotonic semantic web rules languageData Knowl. Eng.200864366268710.1016/j.datak.2007.10.006 ErdemEPatogluVApplications of ASP in roboticsKunstliche Intelligenz2018322–314314910.1007/s13218-018-0544-x J Fandinno (573_CR8) 2019; 19 573_CR6 573_CR5 573_CR4 573_CR34 573_CR3 J de Kleer (573_CR16) 1987; 32 573_CR35 573_CR10 573_CR32 573_CR1 573_CR33 573_CR30 E Kontopoulos (573_CR18) 2011; 24 573_CR31 P Menzies (573_CR27) 2020 G Ferrand (573_CR9) 2006; 25 Y LeCun (573_CR24) 1998; 86 N Katzouris (573_CR15) 2016; 16 M Gelfond (573_CR12) 2013; 23 M Sridharan (573_CR42) 2019; 33 573_CR26 T Miller (573_CR29) 2019; 267 PH Winston (573_CR43) 2018 E Erdem (573_CR7) 2018; 32 P Langley (573_CR22) 2017 W Samek (573_CR38) 2017; 1 M Friedman (573_CR11) 1974; 71 GA Miller (573_CR28) 1995; 38 M Sridharan (573_CR41) 2018; 7 S Lewandowsky (573_CR25) 2000; 6 G Antoniou (573_CR2) 2008; 64 573_CR23 573_CR45 573_CR44 SJ Read (573_CR36) 1993; 65 JE Laird (573_CR20) 2012 573_CR19 573_CR17 573_CR39 573_CR14 M Gelfond (573_CR13) 2014 573_CR37 M Sridharan (573_CR40) 2019; 65 JE Laird (573_CR21) 2017; 32 |
| References_xml | – reference: LewandowskySMundyMTanGThe dynamics of trust: comparing humans to automationJ Exp Psychol Appl.20006210410.1037/1076-898X.6.2.104 – reference: Koh PW, Liang P. Understanding black-box predictions via influence functions. In: International conference on machine learning. pp. 1885–1894. 2017. – reference: LairdJEThe soar cognitive architecture2012CambridgeThe MIT Press10.7551/mitpress/7688.001.0001 – reference: Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Neural information processing systems, pp. 1097–1105. 2012. – reference: ReadSJMarcus-NewhallAExplanatory coherence in social explanations: a parallel distributed processing accountPers Soc Psychol.199365342910.1037/0022-3514.65.3.429 – reference: FriedmanMExplanation and scientific understandingPhilosophy1974711519 – reference: Mota T, Sridharan M. Commonsense reasoning and knowledge acquisition to guide deep learning on robots. In: Robotics science and systems. 2019. – reference: LairdJEGluckKAndersonJForbusKDJenkinsOCLebiereCSalvucciDScheutzMThomazATraftonGWrayREMohanSKirkJRInteractive task learningIEEE Intell Syst.201732462110.1109/MIS.2017.3121552 – reference: Mota T, Sridharan M. Incrementally grounding expressions for spatial relations between objects. In: International joint conference on artificial intelligence, pp. 1928–1934. 2018. – reference: Ribeiro M, Singh S, Guestrin C. Why should I trust you? Explaining the predictions of any classifier. In: International conference on knowledge discovery and data mining, pp. 1135–1144. 2016. – reference: SridharanMMeadowsBKnowledge representation and interactive learning of domain knowledge for human-robot collaborationAdv Cogn Syst.20187120 – reference: FerrandGLessaintWTessierAExplanations and proof treesComput. Inform.2006251001102122476961132.68677 – reference: Mota T, Sridharan M. Commonsense reasoning and deep learning for transparent decision making in robotics. In: European conference on multiagent systems. 2020. – reference: Zhang Y, Sreedharan S, Kulkarni A, Chakraborti T, Zhuo HH, Kambhampati S. Plan explicability and predictability for robot task planning. In: Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R editors. International conference on robotics and automation, vol. 31, pp. 313–1320. 2017. – reference: de KleerJWilliamsBCDiagnosing multiple faultsArtif Intell.1987329713010.1016/0004-3702(87)90063-4 – reference: FandinnoJSchulzCAnswering the “Why” in answer set programming: a survey of explanation approachesTheory and Practice of Logic Programming2019192114203391236910.1017/S1471068418000534 – reference: Bercher P, Biundo S, Geier T, Hoernle T, Nothdurft F, Richter F, Schattenberg B. Plan, repair, execute, explain - how planning helps to assemble your home theater. In: Twenty-fourth international conference on automated planning and scheduling. 2014 – reference: LangleyPMeadowsBSridharanMChoiDExplainable agency for intelligent autonomous systemsInnovative applications of artificial intelligence2017CambridgeAAAI Press – reference: MillerGAWordNet: a lexical database for EnglishCommun ACM.19953811394110.1145/219717.219748 – reference: Chai JY, Gao Q, She L, Yang S, Saba-Sadiya S, Xu G. Language to action: towards interactive task learning with physical agents. In: International joint conference on artificial intelligence. 2018. – reference: ErdemEPatogluVApplications of ASP in roboticsKunstliche Intelligenz2018322–314314910.1007/s13218-018-0544-x – reference: KatzourisNArtikisAPaliourasGOnline learning of event definitionsTheory Pract Logic Programm.2016165–6817833356935110.1017/S1471068416000260 – reference: SridharanMMeadowsBTowards a theory of explanations for human-robot collaborationKunstliche Intelligenz201933433134210.1007/s13218-019-00616-y – reference: Fox M, Long D, Magazzeni D. Explainable planning. In: IJCAI workshop on explainable AI. 2017. – reference: KontopoulosEBassiliadesNAntoniouGVisualizing semantic web proofs of defeasible logic in the dr-device systemKnowl Based Syst.201124340641910.1016/j.knosys.2010.12.001 – reference: Gil Y. Learning by experimentation: incremental refinement of incomplete planning domains. In: International conference on machine learning, pp. 87–95. 1994. – reference: McGuinness DL, Glass A, Wolverton M, Da Silva PP. Explaining task processing in cognitive assistants that learn. In: AAAI spring symposium: interaction challenges for intelligent assistants, pp. 80–87. 2007. – reference: SridharanMGelfondMZhangSWyattJREBA: a refinement-based architecture for knowledge representation and reasoning in roboticsJ Artif Intell Res20196587180399043610.1613/jair.1.11524 – reference: SamekWWiegandTMüllerKRExplainable artificial intelligence: understanding, visualizing and interpreting deep learning ModelsITU J ICT Discov Impact Artif Intell Commun Netw Serv20171110 – reference: Norcliffe-Brown W, Vafeais E, Parisot S. Learning conditioned graph structures for interpretable visual question answering. In: Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R. editors. Advances in neural information processing systems, vol. 31. Montreal, Canada. 2018. – reference: GelfondMKahlYKnowledge representation, reasoning and the design of intelligent agents2014CambridgeCambridge University Press10.1017/CBO9781139342124 – reference: AntoniouGBikakisADimaresisNGenetzakisMGeorgalisGGovernatoriGKarouzakiEKazepisNKosmadakisDKritsotakisMProof explanation for a nonmonotonic semantic web rules languageData Knowl. Eng.200864366268710.1016/j.datak.2007.10.006 – reference: Anjomshoae S, Najjar A, Calvaresi D, Framling K. Explainable agents and robots: results from a systematic literature review. In: International conference on autonomous agents and multiagent systems. Montreal, Canada. 2019. – reference: Borgo R, Cashmore M, Magazzeni D. Towards providing explanations for AI planner decisions. In: IJCAI workshop on explainable artificial intelligence, pp. 11–17. 2018. – reference: MillerTExplanations in artificial intelligence: insights from the social sciencesArtif Intell.2019267138387451110.1016/j.artint.2018.07.007 – reference: Assaf R, Schumann A. Explainable deep neural networks for multivariate time series predictions. In: International joint conference on artificial intelligence, Macao, China, pp. 6488–6490. 2019. – reference: LeCunYBottouLBengioYHaffnerPGradient-based learning applied to document recognitionProc IEEE.199886112278232410.1109/5.726791 – reference: Someya Y. Lemma list for English language. 1998. – reference: Yi K, Wu J, Gan C, Torralba A, Kohli P, Tenenbaum JB. Neural-symbolic VQA: disentangling reasoning from vision and language understanding. In: Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, and Garnett R. editors. Advances in neural information processing systems. Montreal, Canada. 2018. – reference: GelfondMInclezanDSome properties of system descriptions of ALd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AL_d$$\end{document}J Appl Non Class Logics Spec Issue Equilib Logic Answ Set Programm.2013231–210512010.1080/11663081.2013.798954 – reference: Mota T, Sridharan M. Answer me this: constructing disambiguation queries for explanation generation in robotics. In: Workshop of the UK planning and scheduling special interest group. 2020. – reference: WinstonPHHolmesDThe genesis enterprise: taking artificial intelligence to another level via a computational account of human story understandingComputational models of human intelligence report 12018CambridgeMassachusetts Institute of Technology – reference: Law M, Russo A, Broda K. The ILASP system for inductive learning of answer set program. Technical report on arXiV. 2020. https://arxiv.org/abs/2005.00904. – reference: MenziesPBeebeeHZaltaENCounterfactual theories of causationThe Stanford encyclopedia of philosophy20202020StanfordStanford University – reference: Mota T, Sridharan M. Scene understanding, reasoning, and explanation generation. 2020. https://github.com/tmot987/Scenes-Understanding – volume-title: Knowledge representation, reasoning and the design of intelligent agents year: 2014 ident: 573_CR13 doi: 10.1017/CBO9781139342124 – volume: 16 start-page: 817 issue: 5–6 year: 2016 ident: 573_CR15 publication-title: Theory Pract Logic Programm. doi: 10.1017/S1471068416000260 – volume: 32 start-page: 97 year: 1987 ident: 573_CR16 publication-title: Artif Intell. doi: 10.1016/0004-3702(87)90063-4 – volume: 6 start-page: 104 issue: 2 year: 2000 ident: 573_CR25 publication-title: J Exp Psychol Appl. doi: 10.1037/1076-898X.6.2.104 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 573_CR24 publication-title: Proc IEEE. doi: 10.1109/5.726791 – volume: 19 start-page: 114 issue: 2 year: 2019 ident: 573_CR8 publication-title: Theory and Practice of Logic Programming doi: 10.1017/S1471068418000534 – ident: 573_CR1 – volume: 23 start-page: 105 issue: 1–2 year: 2013 ident: 573_CR12 publication-title: J Appl Non Class Logics Spec Issue Equilib Logic Answ Set Programm. doi: 10.1080/11663081.2013.798954 – ident: 573_CR26 – ident: 573_CR14 doi: 10.1016/B978-1-55860-335-6.50019-2 – volume: 64 start-page: 662 issue: 3 year: 2008 ident: 573_CR2 publication-title: Data Knowl. Eng. doi: 10.1016/j.datak.2007.10.006 – ident: 573_CR6 doi: 10.24963/ijcai.2018/1 – ident: 573_CR19 – volume: 24 start-page: 406 issue: 3 year: 2011 ident: 573_CR18 publication-title: Knowl Based Syst. doi: 10.1016/j.knosys.2010.12.001 – ident: 573_CR31 doi: 10.15607/RSS.2019.XV.077 – volume: 267 start-page: 1 year: 2019 ident: 573_CR29 publication-title: Artif Intell. doi: 10.1016/j.artint.2018.07.007 – volume: 7 start-page: 1 year: 2018 ident: 573_CR41 publication-title: Adv Cogn Syst. – volume: 32 start-page: 143 issue: 2–3 year: 2018 ident: 573_CR7 publication-title: Kunstliche Intelligenz doi: 10.1007/s13218-018-0544-x – ident: 573_CR4 doi: 10.1609/icaps.v24i1.13664 – ident: 573_CR33 doi: 10.1007/978-3-030-66412-1_14 – ident: 573_CR17 – ident: 573_CR30 doi: 10.24963/ijcai.2018/266 – ident: 573_CR34 – volume: 65 start-page: 87 year: 2019 ident: 573_CR40 publication-title: J Artif Intell Res doi: 10.1613/jair.1.11524 – volume: 32 start-page: 6 issue: 4 year: 2017 ident: 573_CR21 publication-title: IEEE Intell Syst. doi: 10.1109/MIS.2017.3121552 – volume: 65 start-page: 429 issue: 3 year: 1993 ident: 573_CR36 publication-title: Pers Soc Psychol. doi: 10.1037/0022-3514.65.3.429 – ident: 573_CR3 doi: 10.24963/ijcai.2019/932 – ident: 573_CR10 – ident: 573_CR45 doi: 10.1109/ICRA.2017.7989155 – volume: 33 start-page: 331 issue: 4 year: 2019 ident: 573_CR42 publication-title: Kunstliche Intelligenz doi: 10.1007/s13218-019-00616-y – volume-title: The soar cognitive architecture year: 2012 ident: 573_CR20 doi: 10.7551/mitpress/7688.001.0001 – ident: 573_CR23 – volume-title: Computational models of human intelligence report 1 year: 2018 ident: 573_CR43 – ident: 573_CR44 – volume: 25 start-page: 1001 year: 2006 ident: 573_CR9 publication-title: Comput. Inform. – volume: 38 start-page: 39 issue: 11 year: 1995 ident: 573_CR28 publication-title: Commun ACM. doi: 10.1145/219717.219748 – ident: 573_CR37 doi: 10.1145/2939672.2939778 – volume: 71 start-page: 5 issue: 1 year: 1974 ident: 573_CR11 publication-title: Philosophy – ident: 573_CR5 – volume-title: The Stanford encyclopedia of philosophy year: 2020 ident: 573_CR27 – ident: 573_CR32 doi: 10.1109/ICDL49984.2021.9515605 – ident: 573_CR35 – volume: 1 start-page: 1 year: 2017 ident: 573_CR38 publication-title: ITU J ICT Discov Impact Artif Intell Commun Netw Serv – ident: 573_CR39 – volume-title: Innovative applications of artificial intelligence year: 2017 ident: 573_CR22 |
| SSID | ssj0002504465 |
| Score | 2.2959278 |
| Snippet | A robot’s ability to provide explanatory descriptions of its decisions and beliefs promotes effective collaboration with humans. Providing the desired... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 242 |
| SubjectTerms | Actuation Advances in Multi-Agent Systems Research: EUMAS 2020 Extended Selected Papers Algorithms Classification Cognition & reasoning Computer Imaging Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Decision making Deep learning Descriptions Image manipulation Information Systems and Communication Service Knowledge representation Logic Original Research Pattern Recognition and Graphics Planning Reasoning Robot learning Robotics Robots Scene analysis Semantic web Software Engineering/Programming and Operating Systems Vision |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NSwMxEA1aPXjxAxWrVXLwpsFsum02JxG16MFSikLx4JJPKci2dqu_30k226KgF2Fv2Q1hJ5l5SWbeQ-g04047ZQ0BSERJmhlYc8wo0hZtxzOlVDeKTfB-PxuNxCAeuJUxrbL2icFRm4n2Z-QXEJYACVPYTVxO34lXjfK3q1FCYxWteZYEL90w6Dwvzlg8PVca1CQhDDEiRGcU62ZC9Ry4Yi6Iz1EItICEfo9NS8D54440hJ7e1n8HvY02I-jEV9Us2UErtthFL_c1U4TBvkzEp1XDg4dWluGMFsvC4BtrpziSsL5iQLi4okP3NWRzaK0UevBDELXC4wIPJ2riqZ_30FPv9vH6jkS1BaIZzyjRpgO_QkDQlABZDEsBqyjGnOCAKlyWOgB2LLUJc7Dl1JQ67qRJwUfIJHPW8fY-ahSTwh4g7KigSqZ-6-dSLpnoWme7iiVKQEiWuomS-j_nOlKRe0WMt3xBohxsk8OA8mCbnDbR2eKbaUXE8efbrdogeVyUZb60RhOd1yZdNv_e2-HfvR2hDRZmkU_ibaHGfPZhj9G6_pyPy9lJmJJfe47mBg priority: 102 providerName: ProQuest |
| Title | Integrated Commonsense Reasoning and Deep Learning for Transparent Decision Making in Robotics |
| URI | https://link.springer.com/article/10.1007/s42979-021-00573-0 https://www.proquest.com/docview/2938260448 |
| Volume | 2 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2661-8907 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0002504465 issn: 2662-995X databaseCode: P5Z dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2661-8907 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0002504465 issn: 2662-995X databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Computer Science Database (NC LIVE) customDbUrl: eissn: 2661-8907 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0002504465 issn: 2662-995X databaseCode: K7- dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2662-995X databaseCode: RSV dateStart: 20200101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2662-995X databaseCode: RSV dateStart: 20190101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB609eDF-sRqLTl408A23TbJ0UeLIpZSHxQPLpvdRAqyLd3q73eSZlsUFRSWvWw2hLzmm2Tm-wCOBTeJUTqlCIkCGooU1xxLFW3KpuFCKdX2YhO81xPDoez7pLC8iHYvriTdTr1IdsOdk0tqQwocix9FR72M5k5YwYbB3ePiZMWScoVOQxKND6NStoY-W-b7aj5bpCXM_HIz6gxOt_K_pm7ChgeY5Gw-I7ZgRWfbUCnEG4hfyzvwfF0QRaTEZonYqGp8yEDHuTuiJXGWkkutJ8RzsL4QBLhkzoZuU8hm-HUu0ENunaYVGWVkMFZjy_y8Cw_dzv3FFfViCzRhXAQ0SVvYXok2M0bEkrIQoYpizEiOoMKI0CCuY6FuMIMeZxIEhps4DXGLiBvCaMObe1DKxpneB2ICGag4tJ6fCXnMZFsb3VasoSRa5DipQqPo8CjxTORWEOM1WnAouw6MsEGR68AoqMLJ4p_JnIfj19K1YhwjvybzCIEN-lI4N0QVTotxW37-ubaDvxU_hHXmht7G9NagNJu-6SNYS95no3xah_J5p9cf1GH1hlN891tPdTd_PwB5T-Wm |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB58gV58oOL6zEFPGsxm46Y5iIgPXFYXEYU9WZsmEUG6q7sq_il_o5O03UVBbx6E3tKGtpmZbyaZ-QZgM5Iuddoaii4RoyIyqHPcaFpTNScjrXW9aDYhW62o3VaXI_BR1sL4tMrSJgZDbTqp3yPfRVhCT5hhNHHQfaK-a5Q_XS1baORi0bTvbxiy9fYbx7i-W5yfnlwfndGiqwBNuYwYTc0e4ppCcEgQmg0XiMmac6ckoqeLhEMHhgtb5Q5Dq5QxJ11iBOpCUo2cdbKG847CuKhF0utVU9LBno6nAxOheyXCHqdK7bWLOp1QrYemXyrqcyICDSFlX7Fw6OB-O5MNUHc6899-0ixMF041Ocy1YA5GbDYPt42SCcMQXwbj08bxIlc26YU9aJJkhhxb2yUFyew9QQ-e5HTvvkauj6N5ByJyEZp2kYeMXHV0x1NbL8DNn3zSIoxlncwuAXFMMZ0IH9o6IROu6tbZuuZVrdDlSNIKVMt1jdOCat13_HiMByTRQRZifKE4yELMKrA9eKabE438evdqKQBxYXR68XD1K7BTitBw-OfZln-fbQMmz64vzuPzRqu5AlM8SLBPWF6Fsf7zi12DifS1_9B7Xg_qQODur0XrE2ACQG8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SRbxYn1itmoM3Dd1N02ZzFGuxqKXUBz25bDaJFGRb2tXf7yT7qIoKIuwt2RCSmcw3ycw3CJ0E3MRGakUAEnmEBQp0jipJmqJpeCClbOfFJni_H4xGYvAhi99FuxdPkllOg2VpStLGVJlGmfgGpygXxIYXOEY_Ak77MrOB9NZfv3ssb1ksQRdz9STBEFEiRGuUZ858P8xn67SAnF9eSZ3x6Vb_P-0NtJ4DT3yeScomWtLJFqoWRR1wruPb6KlXEEgobLNHbLQ1fHioo7m7usVRonBH6ynOuVmfMQBfnLGk29SyFFqzwj341tW6wuMEDydyYhmhd9BD9_L-4orkRRhITHngkVi1YL4CbGkESEZRBhBGUmoEB7BhAmYA71GmfWrAE409z3ATKQZHR-QHRhve3EWVZJLoPYSNJzwZMesRGsYjKtra6LakvhRgqaO4hvxi8cM4Zyi3hTJewpJb2S1gCBMK3QKGXg2dlv9MM36OX3vXiz0Nc12dhwB4wMcCOQlq6KzYw0Xzz6Pt_637MVoddLrhTa9_fYDWqJMCG_ZbR5V09qoP0Ur8lo7nsyMnwu9Whe4E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+Commonsense+Reasoning+and+Deep+Learning+for+Transparent+Decision+Making+in+Robotics&rft.jtitle=SN+computer+science&rft.au=Mota%2C+Tiago&rft.au=Sridharan%2C+Mohan&rft.au=Leonardis%2C+Ale%C5%A1&rft.date=2021-07-01&rft.issn=2662-995X&rft.eissn=2661-8907&rft.volume=2&rft.issue=4&rft_id=info:doi/10.1007%2Fs42979-021-00573-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42979_021_00573_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-995X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-995X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-995X&client=summon |