Parallel Multistep Evaluation With Efficient Data Utilization for Safe Neural Critic Control and Its Application to Orbital Maneuver Systems
Data-driven methods have significantly advanced optimal learning control, but some approaches overlook systematic considerations of data utilization, including safety, efficiency, and error accumulation. To address the neglects in safe neural critic control, this article introduces a parallel multis...
Saved in:
| Published in: | IEEE transaction on neural networks and learning systems Vol. 36; no. 9; pp. 17114 - 17127 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.09.2025
|
| Subjects: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Data-driven methods have significantly advanced optimal learning control, but some approaches overlook systematic considerations of data utilization, including safety, efficiency, and error accumulation. To address the neglects in safe neural critic control, this article introduces a parallel multistep evaluation mechanism that combines data from the system interaction with data generated by data-driven models. Based on this evaluation mechanism, we propose a novel parallel multistep Q-learning algorithm that enhances data utilization efficiency and mitigates the error accumulation. Furthermore, we formulate a novel control barrier function (CBF) to ensure safety during learning and control processes, which is capable of dealing with asymmetric constraints and adjusting the constraint strength. In addition, the analysis reveals that multistep information introduced by data-driven models influences the learning performance of actor-critic neural networks (NNs). Finally, parallel multistep Q-learning, which makes use of data in aspects of safety, efficiency, and error bounds, is validated within an orbital maneuver system. |
|---|---|
| AbstractList | Data-driven methods have significantly advanced optimal learning control, but some approaches overlook systematic considerations of data utilization, including safety, efficiency, and error accumulation. To address the neglects in safe neural critic control, this article introduces a parallel multistep evaluation mechanism that combines data from the system interaction with data generated by data-driven models. Based on this evaluation mechanism, we propose a novel parallel multistep Q-learning algorithm that enhances data utilization efficiency and mitigates the error accumulation. Furthermore, we formulate a novel control barrier function (CBF) to ensure safety during learning and control processes, which is capable of dealing with asymmetric constraints and adjusting the constraint strength. In addition, the analysis reveals that multistep information introduced by data-driven models influences the learning performance of actor-critic neural networks (NNs). Finally, parallel multistep Q-learning, which makes use of data in aspects of safety, efficiency, and error bounds, is validated within an orbital maneuver system.Data-driven methods have significantly advanced optimal learning control, but some approaches overlook systematic considerations of data utilization, including safety, efficiency, and error accumulation. To address the neglects in safe neural critic control, this article introduces a parallel multistep evaluation mechanism that combines data from the system interaction with data generated by data-driven models. Based on this evaluation mechanism, we propose a novel parallel multistep Q-learning algorithm that enhances data utilization efficiency and mitigates the error accumulation. Furthermore, we formulate a novel control barrier function (CBF) to ensure safety during learning and control processes, which is capable of dealing with asymmetric constraints and adjusting the constraint strength. In addition, the analysis reveals that multistep information introduced by data-driven models influences the learning performance of actor-critic neural networks (NNs). Finally, parallel multistep Q-learning, which makes use of data in aspects of safety, efficiency, and error bounds, is validated within an orbital maneuver system. Data-driven methods have significantly advanced optimal learning control, but some approaches overlook systematic considerations of data utilization, including safety, efficiency, and error accumulation. To address the neglects in safe neural critic control, this article introduces a parallel multistep evaluation mechanism that combines data from the system interaction with data generated by data-driven models. Based on this evaluation mechanism, we propose a novel parallel multistep Q-learning algorithm that enhances data utilization efficiency and mitigates the error accumulation. Furthermore, we formulate a novel control barrier function (CBF) to ensure safety during learning and control processes, which is capable of dealing with asymmetric constraints and adjusting the constraint strength. In addition, the analysis reveals that multistep information introduced by data-driven models influences the learning performance of actor-critic neural networks (NNs). Finally, parallel multistep Q-learning, which makes use of data in aspects of safety, efficiency, and error bounds, is validated within an orbital maneuver system. |
| Author | Qiao, Junfei Wang, Ding Wang, Jiangyu Ren, Jin Liu, Derong |
| Author_xml | – sequence: 1 givenname: Jiangyu orcidid: 0000-0002-0309-8109 surname: Wang fullname: Wang, Jiangyu email: wangjiangyu@emails.bjut.edu.cn organization: School of Information Science and Technology, Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing Laboratory of Smart Environmental Protection, and Beijing Institute of Artificial Intelligence, Beijing University of Technology, Beijing, China – sequence: 2 givenname: Ding orcidid: 0000-0002-7149-5712 surname: Wang fullname: Wang, Ding email: dingwang@bjut.edu.cn organization: School of Information Science and Technology, Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing Laboratory of Smart Environmental Protection, and Beijing Institute of Artificial Intelligence, Beijing University of Technology, Beijing, China – sequence: 3 givenname: Jin surname: Ren fullname: Ren, Jin email: renjin@emails.bjut.edu.cn organization: School of Information Science and Technology, Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing Laboratory of Smart Environmental Protection, and Beijing Institute of Artificial Intelligence, Beijing University of Technology, Beijing, China – sequence: 4 givenname: Derong orcidid: 0000-0003-3715-4778 surname: Liu fullname: Liu, Derong email: liudr@sustech.edu.cn organization: School of Automation and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, China – sequence: 5 givenname: Junfei orcidid: 0000-0003-0950-7900 surname: Qiao fullname: Qiao, Junfei email: adqiao@bjut.edu.cn organization: School of Information Science and Technology, Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing Laboratory of Smart Environmental Protection, and Beijing Institute of Artificial Intelligence, Beijing University of Technology, Beijing, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40440136$$D View this record in MEDLINE/PubMed |
| BookMark | eNpFkd1OGzEQhS1EBZTyAqhCvuQmqX829u4lCqFFCqFSqNq7le0dC1fOerG9SPQZ-tA13ZTOzYzk75yx5rxHh33oAaFzSuaUkubTw2az3s4ZYYs5X0giqThAJ4wKNmO8rg_fZvnjGJ2l9JOUEmQhquYIHVekqgjl4gT9_qqi8h48vht9dinDgFfPyo8qu9Dj7y4_4pW1zjjoM75WWeFv2Xn3a3q3IeKtsoA3MBYfvIwuO4OXoc8xeKz6Dt_mhK-GwTszSXLA91G7XOg71cP4DMXipSzepQ_onVU-wdm-n6Ltzeph-WW2vv98u7xazwyTMs-4JUbyjtRGLLQhghvaKLBaC2C1ZtpQrnnHKDWUiK5STFva1VYyS2pJ-Sm6nFyHGJ5GSLnduWTA-_KbMKaWM1qxphGyLujFHh31Drp2iG6n4kv7734FYBNgYkgpgn1DKGlfc2r_5tS-5tTucyqij5PIAcB_ASVUStHwPwRNkEU |
| CODEN | ITNNAL |
| Cites_doi | 10.2514/1.G001154 10.1109/TNNLS.2017.2661865 10.1109/TCBB.2018.2830357 10.1109/TASE.2023.3294187 10.1109/TCYB.2016.2623859 10.1109/TCYB.2021.3054626 10.23919/cje.2024.00.287 10.1109/TSMC.2020.3042876 10.1109/TCSII.2023.3343375 10.1109/TAC.2016.2638961 10.1109/TCYB.2022.3163816 10.1016/j.ins.2024.121640 10.1109/TSMC.2013.2295351 10.1016/j.procs.2022.01.020 10.1109/TNNLS.2013.2280013 10.1016/j.ins.2017.05.005 10.1109/TAC.2018.2790260 10.1109/TNNLS.2021.3135405 10.1109/JAS.2022.105692 10.1109/TCST.2017.2789191 10.1109/JAS.2023.123684 10.1109/TNNLS.2022.3143527 10.1109/TNNLS.2022.3213825 10.1109/TNNLS.2013.2281663 10.1109/TSMC.2017.2771516 10.1016/j.asoc.2024.111687 10.1109/TCYB.2025.3530951 10.1109/TNNLS.2022.3186528 10.1109/JAS.2024.124509 10.23919/cje.2023.00.288 10.1109/TCYB.2022.3232599 10.1109/TIE.2017.2772162 10.1109/TSMCB.2012.2216523 10.1109/TCYB.2014.2354377 10.1109/TAC.2019.2926167 10.1109/TIM.2023.3325870 10.1109/TNNLS.2020.3009015 10.1109/TNNLS.2020.2967871 10.1002/rnc.5132 10.1016/j.neucom.2024.128837 10.1109/TAC.2020.3024161 10.1109/TCYB.2021.3108034 10.1201/9781003143444 10.1109/TCYB.2021.3107801 10.22190/FUME240914044P 10.1109/LRA.2021.3070252 10.1109/TCYB.2016.2542923 10.1016/j.neunet.2021.08.025 10.1109/TNNLS.2022.3178746 10.1109/TNNLS.2023.3326397 10.1007/978-3-319-50815-3 10.1109/JAS.2023.123843 10.1109/TCYB.2022.3233593 10.1109/TRO.2019.2920206 10.1016/j.automatica.2025.112168 10.1109/TNNLS.2022.3152268 10.1109/TCYB.2015.2417170 10.1109/TNNLS.2017.2751018 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
| DOI | 10.1109/TNNLS.2025.3570716 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 17127 |
| ExternalDocumentID | 40440136 10_1109_TNNLS_2025_3570716 11017769 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62222301; 62473012; 62021003 funderid: 10.13039/501100001809 – fundername: Beijing Natural Science Foundation grantid: F251019 – fundername: National Science and Technology Major Project grantid: 2021ZD0112302; 2021ZD0112301 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AASAJ AAWTH ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION AARMG ABAZT NPM 7X8 |
| ID | FETCH-LOGICAL-c277t-3f0c73d08c65bc063c19aefbb6e28b2bc13b3d211c106d4a2bf1d8f72f08713 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001499469800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Sat Nov 01 14:40:44 EDT 2025 Sat Sep 06 11:16:10 EDT 2025 Sat Nov 29 07:36:10 EST 2025 Mon Dec 08 03:37:11 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c277t-3f0c73d08c65bc063c19aefbb6e28b2bc13b3d211c106d4a2bf1d8f72f08713 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-3715-4778 0000-0003-0950-7900 0000-0002-0309-8109 0000-0002-7149-5712 |
| PMID | 40440136 |
| PQID | 3214299678 |
| PQPubID | 23479 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_3214299678 pubmed_primary_40440136 ieee_primary_11017769 crossref_primary_10_1109_TNNLS_2025_3570716 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref57 ref12 ref56 ref15 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref58 doi: 10.2514/1.G001154 – ident: ref46 doi: 10.1109/TNNLS.2017.2661865 – ident: ref16 doi: 10.1109/TCBB.2018.2830357 – ident: ref15 doi: 10.1109/TASE.2023.3294187 – ident: ref33 doi: 10.1109/TCYB.2016.2623859 – ident: ref50 doi: 10.1109/TCYB.2021.3054626 – ident: ref3 doi: 10.23919/cje.2024.00.287 – ident: ref23 doi: 10.1109/TSMC.2020.3042876 – ident: ref41 doi: 10.1109/TCSII.2023.3343375 – ident: ref55 doi: 10.1109/TAC.2016.2638961 – ident: ref1 doi: 10.1109/TCYB.2022.3163816 – ident: ref7 doi: 10.1016/j.ins.2024.121640 – ident: ref28 doi: 10.1109/TSMC.2013.2295351 – ident: ref9 doi: 10.1016/j.procs.2022.01.020 – ident: ref17 doi: 10.1109/TNNLS.2013.2280013 – ident: ref37 doi: 10.1016/j.ins.2017.05.005 – ident: ref44 doi: 10.1109/TAC.2018.2790260 – ident: ref31 doi: 10.1109/TNNLS.2021.3135405 – ident: ref21 doi: 10.1109/JAS.2022.105692 – ident: ref11 doi: 10.1109/TCST.2017.2789191 – ident: ref40 doi: 10.1109/JAS.2023.123684 – ident: ref57 doi: 10.1109/TNNLS.2022.3143527 – ident: ref6 doi: 10.1109/TNNLS.2022.3213825 – ident: ref49 doi: 10.1109/TNNLS.2013.2281663 – ident: ref38 doi: 10.1109/TSMC.2017.2771516 – ident: ref8 doi: 10.1016/j.asoc.2024.111687 – ident: ref36 doi: 10.1109/TCYB.2025.3530951 – ident: ref2 doi: 10.1109/TNNLS.2022.3186528 – ident: ref12 doi: 10.1109/JAS.2024.124509 – ident: ref5 doi: 10.23919/cje.2023.00.288 – ident: ref47 doi: 10.1109/TCYB.2022.3232599 – ident: ref39 doi: 10.1109/TIE.2017.2772162 – ident: ref48 doi: 10.1109/TSMCB.2012.2216523 – ident: ref43 doi: 10.1109/TCYB.2014.2354377 – ident: ref51 doi: 10.1109/TAC.2019.2926167 – ident: ref29 doi: 10.1109/TIM.2023.3325870 – ident: ref18 doi: 10.1109/TNNLS.2020.3009015 – ident: ref53 doi: 10.1109/TNNLS.2020.2967871 – ident: ref56 doi: 10.1002/rnc.5132 – ident: ref14 doi: 10.1016/j.neucom.2024.128837 – ident: ref13 doi: 10.1109/TAC.2020.3024161 – ident: ref45 doi: 10.1109/TCYB.2021.3108034 – ident: ref27 doi: 10.1201/9781003143444 – ident: ref52 doi: 10.1109/TCYB.2021.3107801 – ident: ref10 doi: 10.22190/FUME240914044P – ident: ref26 doi: 10.1109/LRA.2021.3070252 – ident: ref32 doi: 10.1109/TCYB.2016.2542923 – ident: ref30 doi: 10.1016/j.neunet.2021.08.025 – ident: ref35 doi: 10.1109/TNNLS.2022.3178746 – ident: ref54 doi: 10.1109/TNNLS.2023.3326397 – ident: ref22 doi: 10.1007/978-3-319-50815-3 – ident: ref24 doi: 10.1109/JAS.2023.123843 – ident: ref20 doi: 10.1109/TCYB.2022.3233593 – ident: ref25 doi: 10.1109/TRO.2019.2920206 – ident: ref42 doi: 10.1016/j.automatica.2025.112168 – ident: ref19 doi: 10.1109/TNNLS.2022.3152268 – ident: ref4 doi: 10.1109/TCYB.2015.2417170 – ident: ref34 doi: 10.1109/TNNLS.2017.2751018 |
| SSID | ssj0000605649 |
| Score | 2.4904306 |
| Snippet | Data-driven methods have significantly advanced optimal learning control, but some approaches overlook systematic considerations of data utilization, including... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 17114 |
| SubjectTerms | Adaptation models Adaptive dynamic programming (ADP) Aerospace electronics approximate errors Artificial neural networks Cost function Costs Data models data-driven Heuristic algorithms learning systems neural networks (NNs) Optimal control Q-learning safe optimal control Safety |
| Title | Parallel Multistep Evaluation With Efficient Data Utilization for Safe Neural Critic Control and Its Application to Orbital Maneuver Systems |
| URI | https://ieeexplore.ieee.org/document/11017769 https://www.ncbi.nlm.nih.gov/pubmed/40440136 https://www.proquest.com/docview/3214299678 |
| Volume | 36 |
| WOSCitedRecordID | wos001499469800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0B4tBLaQst2w80SL2hQGJnY-eI6KJWgi3SUnVvkT8mAgll0ZLlV_CjO3aS3ROHnpJDHDt5Y80b2zMP4Lska6wQPjEkZJIXpBOtiyxRmTU101OV26hacqWmUz2flzd9snrMhSGiePiMTsNt3Mv3C7cKS2VnWbAfVZTbsM2XLllrvaCSMjEvIt0VWSESIdV8SJJJy7Pb6fRqxuGgGJ_KsWK_GrSL8qC3nMXqzBufFEVWXueb0e9c7v3niN_B255g4nlnEe9hi5oPsDeIN2A_l_fh5cYsg47KA8YcXAb7ESfr0t_49769w0msL8E94A_TGvzT3j_0aZvIXBdnpiYM1T24v04yAS-6k-9oGo-_2ic83-yPY7vA30sbRErw2jS0eg7D6QqmH8DscnJ78TPppRkSJ5RqE1mnTkmfaleMrWOa47LSUG1tQUJbYV0mrfQcXDoOOX1uhK0zr2sl6pQjNPkRdppFQ4eAXomUm5TSKZ1b4rbekVUyp1qXRpkRnAzQVI9d_Y0qxi1pWUVMq4Bp1WM6goOAwebJ_veP4HiAs-LpE_ZE-DsXq6cq6DSxR2aXPYJPHc7r1oN5fH7lrV_gTei8O3H2FXba5Yq-wa57ZtCWR2yjc30UbfQf4hXjXg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB3xUYleCi203RboVOqtCiR2NnaOCBaBWFKk3ap7i_wVFQll0ZLlV_RHd-wkuycO3HKIY8dvrHlje-YB_OBOK82YjZRjPEozJyMpsyQSiVYV0VOR6qBaMhZFIWez_K5LVg-5MM65cPnMnfjHcJZv52bpt8pOE28_Iss3YXuYpixu07VWWyoxUfMsEF6WZCxiXMz6NJk4P50WxXhCASEbnvChIM_q1YtSr7ichPrMa68UZFZeZpzB81zuvnLMe_Cuo5h41trEe9hw9QfY7eUbsFvN-_DvTi28ksoDhixcgvsRR6vi3_jnvvmLo1BhgnrAC9Uo_N3cP3SJm0hsFyeqcujre1B_rWgCnrd331HVFq-bJzxbn5BjM8dfC-1lSvBW1W757IfTlkw_gMnlaHp-FXXiDJFhQjQRr2IjuI2lyYbaENExSa5cpXXmmNRMm4Rrbim8NBR02lQxXSVWVoJVMcVo_CNs1fPafQa0gsXUJOdGyFQ7amuN04KnrpK5EmoAP3toyse2AkcZIpc4LwOmpce07DAdwIHHYP1mN_0D-N7DWdIC8qci9J_z5VPplZrIJ5PTHsCnFudV6948vrzw1W-wczW9HZfj6-LmK7z1A2nvnx3CVrNYuiN4Y54JwMVxsNT_fU_lvQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+Multistep+Evaluation+With+Efficient+Data+Utilization+for+Safe+Neural+Critic+Control+and+Its+Application+to+Orbital+Maneuver+Systems&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Wang%2C+Jiangyu&rft.au=Wang%2C+Ding&rft.au=Ren%2C+Jin&rft.au=Liu%2C+Derong&rft.date=2025-09-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=36&rft.issue=9&rft.spage=17114&rft.epage=17127&rft_id=info:doi/10.1109%2FTNNLS.2025.3570716&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2025_3570716 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |