Parallel Multistep Evaluation With Efficient Data Utilization for Safe Neural Critic Control and Its Application to Orbital Maneuver Systems

Data-driven methods have significantly advanced optimal learning control, but some approaches overlook systematic considerations of data utilization, including safety, efficiency, and error accumulation. To address the neglects in safe neural critic control, this article introduces a parallel multis...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems Vol. 36; no. 9; pp. 17114 - 17127
Main Authors: Wang, Jiangyu, Wang, Ding, Ren, Jin, Liu, Derong, Qiao, Junfei
Format: Journal Article
Language:English
Published: United States IEEE 01.09.2025
Subjects:
ISSN:2162-237X, 2162-2388, 2162-2388
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Data-driven methods have significantly advanced optimal learning control, but some approaches overlook systematic considerations of data utilization, including safety, efficiency, and error accumulation. To address the neglects in safe neural critic control, this article introduces a parallel multistep evaluation mechanism that combines data from the system interaction with data generated by data-driven models. Based on this evaluation mechanism, we propose a novel parallel multistep Q-learning algorithm that enhances data utilization efficiency and mitigates the error accumulation. Furthermore, we formulate a novel control barrier function (CBF) to ensure safety during learning and control processes, which is capable of dealing with asymmetric constraints and adjusting the constraint strength. In addition, the analysis reveals that multistep information introduced by data-driven models influences the learning performance of actor-critic neural networks (NNs). Finally, parallel multistep Q-learning, which makes use of data in aspects of safety, efficiency, and error bounds, is validated within an orbital maneuver system.
AbstractList Data-driven methods have significantly advanced optimal learning control, but some approaches overlook systematic considerations of data utilization, including safety, efficiency, and error accumulation. To address the neglects in safe neural critic control, this article introduces a parallel multistep evaluation mechanism that combines data from the system interaction with data generated by data-driven models. Based on this evaluation mechanism, we propose a novel parallel multistep Q-learning algorithm that enhances data utilization efficiency and mitigates the error accumulation. Furthermore, we formulate a novel control barrier function (CBF) to ensure safety during learning and control processes, which is capable of dealing with asymmetric constraints and adjusting the constraint strength. In addition, the analysis reveals that multistep information introduced by data-driven models influences the learning performance of actor-critic neural networks (NNs). Finally, parallel multistep Q-learning, which makes use of data in aspects of safety, efficiency, and error bounds, is validated within an orbital maneuver system.Data-driven methods have significantly advanced optimal learning control, but some approaches overlook systematic considerations of data utilization, including safety, efficiency, and error accumulation. To address the neglects in safe neural critic control, this article introduces a parallel multistep evaluation mechanism that combines data from the system interaction with data generated by data-driven models. Based on this evaluation mechanism, we propose a novel parallel multistep Q-learning algorithm that enhances data utilization efficiency and mitigates the error accumulation. Furthermore, we formulate a novel control barrier function (CBF) to ensure safety during learning and control processes, which is capable of dealing with asymmetric constraints and adjusting the constraint strength. In addition, the analysis reveals that multistep information introduced by data-driven models influences the learning performance of actor-critic neural networks (NNs). Finally, parallel multistep Q-learning, which makes use of data in aspects of safety, efficiency, and error bounds, is validated within an orbital maneuver system.
Data-driven methods have significantly advanced optimal learning control, but some approaches overlook systematic considerations of data utilization, including safety, efficiency, and error accumulation. To address the neglects in safe neural critic control, this article introduces a parallel multistep evaluation mechanism that combines data from the system interaction with data generated by data-driven models. Based on this evaluation mechanism, we propose a novel parallel multistep Q-learning algorithm that enhances data utilization efficiency and mitigates the error accumulation. Furthermore, we formulate a novel control barrier function (CBF) to ensure safety during learning and control processes, which is capable of dealing with asymmetric constraints and adjusting the constraint strength. In addition, the analysis reveals that multistep information introduced by data-driven models influences the learning performance of actor-critic neural networks (NNs). Finally, parallel multistep Q-learning, which makes use of data in aspects of safety, efficiency, and error bounds, is validated within an orbital maneuver system.
Author Qiao, Junfei
Wang, Ding
Wang, Jiangyu
Ren, Jin
Liu, Derong
Author_xml – sequence: 1
  givenname: Jiangyu
  orcidid: 0000-0002-0309-8109
  surname: Wang
  fullname: Wang, Jiangyu
  email: wangjiangyu@emails.bjut.edu.cn
  organization: School of Information Science and Technology, Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing Laboratory of Smart Environmental Protection, and Beijing Institute of Artificial Intelligence, Beijing University of Technology, Beijing, China
– sequence: 2
  givenname: Ding
  orcidid: 0000-0002-7149-5712
  surname: Wang
  fullname: Wang, Ding
  email: dingwang@bjut.edu.cn
  organization: School of Information Science and Technology, Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing Laboratory of Smart Environmental Protection, and Beijing Institute of Artificial Intelligence, Beijing University of Technology, Beijing, China
– sequence: 3
  givenname: Jin
  surname: Ren
  fullname: Ren, Jin
  email: renjin@emails.bjut.edu.cn
  organization: School of Information Science and Technology, Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing Laboratory of Smart Environmental Protection, and Beijing Institute of Artificial Intelligence, Beijing University of Technology, Beijing, China
– sequence: 4
  givenname: Derong
  orcidid: 0000-0003-3715-4778
  surname: Liu
  fullname: Liu, Derong
  email: liudr@sustech.edu.cn
  organization: School of Automation and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, China
– sequence: 5
  givenname: Junfei
  orcidid: 0000-0003-0950-7900
  surname: Qiao
  fullname: Qiao, Junfei
  email: adqiao@bjut.edu.cn
  organization: School of Information Science and Technology, Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing Laboratory of Smart Environmental Protection, and Beijing Institute of Artificial Intelligence, Beijing University of Technology, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40440136$$D View this record in MEDLINE/PubMed
BookMark eNpFkd1OGzEQhS1EBZTyAqhCvuQmqX829u4lCqFFCqFSqNq7le0dC1fOerG9SPQZ-tA13ZTOzYzk75yx5rxHh33oAaFzSuaUkubTw2az3s4ZYYs5X0giqThAJ4wKNmO8rg_fZvnjGJ2l9JOUEmQhquYIHVekqgjl4gT9_qqi8h48vht9dinDgFfPyo8qu9Dj7y4_4pW1zjjoM75WWeFv2Xn3a3q3IeKtsoA3MBYfvIwuO4OXoc8xeKz6Dt_mhK-GwTszSXLA91G7XOg71cP4DMXipSzepQ_onVU-wdm-n6Ltzeph-WW2vv98u7xazwyTMs-4JUbyjtRGLLQhghvaKLBaC2C1ZtpQrnnHKDWUiK5STFva1VYyS2pJ-Sm6nFyHGJ5GSLnduWTA-_KbMKaWM1qxphGyLujFHh31Drp2iG6n4kv7734FYBNgYkgpgn1DKGlfc2r_5tS-5tTucyqij5PIAcB_ASVUStHwPwRNkEU
CODEN ITNNAL
Cites_doi 10.2514/1.G001154
10.1109/TNNLS.2017.2661865
10.1109/TCBB.2018.2830357
10.1109/TASE.2023.3294187
10.1109/TCYB.2016.2623859
10.1109/TCYB.2021.3054626
10.23919/cje.2024.00.287
10.1109/TSMC.2020.3042876
10.1109/TCSII.2023.3343375
10.1109/TAC.2016.2638961
10.1109/TCYB.2022.3163816
10.1016/j.ins.2024.121640
10.1109/TSMC.2013.2295351
10.1016/j.procs.2022.01.020
10.1109/TNNLS.2013.2280013
10.1016/j.ins.2017.05.005
10.1109/TAC.2018.2790260
10.1109/TNNLS.2021.3135405
10.1109/JAS.2022.105692
10.1109/TCST.2017.2789191
10.1109/JAS.2023.123684
10.1109/TNNLS.2022.3143527
10.1109/TNNLS.2022.3213825
10.1109/TNNLS.2013.2281663
10.1109/TSMC.2017.2771516
10.1016/j.asoc.2024.111687
10.1109/TCYB.2025.3530951
10.1109/TNNLS.2022.3186528
10.1109/JAS.2024.124509
10.23919/cje.2023.00.288
10.1109/TCYB.2022.3232599
10.1109/TIE.2017.2772162
10.1109/TSMCB.2012.2216523
10.1109/TCYB.2014.2354377
10.1109/TAC.2019.2926167
10.1109/TIM.2023.3325870
10.1109/TNNLS.2020.3009015
10.1109/TNNLS.2020.2967871
10.1002/rnc.5132
10.1016/j.neucom.2024.128837
10.1109/TAC.2020.3024161
10.1109/TCYB.2021.3108034
10.1201/9781003143444
10.1109/TCYB.2021.3107801
10.22190/FUME240914044P
10.1109/LRA.2021.3070252
10.1109/TCYB.2016.2542923
10.1016/j.neunet.2021.08.025
10.1109/TNNLS.2022.3178746
10.1109/TNNLS.2023.3326397
10.1007/978-3-319-50815-3
10.1109/JAS.2023.123843
10.1109/TCYB.2022.3233593
10.1109/TRO.2019.2920206
10.1016/j.automatica.2025.112168
10.1109/TNNLS.2022.3152268
10.1109/TCYB.2015.2417170
10.1109/TNNLS.2017.2751018
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TNNLS.2025.3570716
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 17127
ExternalDocumentID 40440136
10_1109_TNNLS_2025_3570716
11017769
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62222301; 62473012; 62021003
  funderid: 10.13039/501100001809
– fundername: Beijing Natural Science Foundation
  grantid: F251019
– fundername: National Science and Technology Major Project
  grantid: 2021ZD0112302; 2021ZD0112301
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
AARMG
ABAZT
NPM
7X8
ID FETCH-LOGICAL-c277t-3f0c73d08c65bc063c19aefbb6e28b2bc13b3d211c106d4a2bf1d8f72f08713
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001499469800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sat Nov 01 14:40:44 EDT 2025
Sat Sep 06 11:16:10 EDT 2025
Sat Nov 29 07:36:10 EST 2025
Mon Dec 08 03:37:11 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c277t-3f0c73d08c65bc063c19aefbb6e28b2bc13b3d211c106d4a2bf1d8f72f08713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3715-4778
0000-0003-0950-7900
0000-0002-0309-8109
0000-0002-7149-5712
PMID 40440136
PQID 3214299678
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_3214299678
pubmed_primary_40440136
ieee_primary_11017769
crossref_primary_10_1109_TNNLS_2025_3570716
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref12
ref56
ref15
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref58
  doi: 10.2514/1.G001154
– ident: ref46
  doi: 10.1109/TNNLS.2017.2661865
– ident: ref16
  doi: 10.1109/TCBB.2018.2830357
– ident: ref15
  doi: 10.1109/TASE.2023.3294187
– ident: ref33
  doi: 10.1109/TCYB.2016.2623859
– ident: ref50
  doi: 10.1109/TCYB.2021.3054626
– ident: ref3
  doi: 10.23919/cje.2024.00.287
– ident: ref23
  doi: 10.1109/TSMC.2020.3042876
– ident: ref41
  doi: 10.1109/TCSII.2023.3343375
– ident: ref55
  doi: 10.1109/TAC.2016.2638961
– ident: ref1
  doi: 10.1109/TCYB.2022.3163816
– ident: ref7
  doi: 10.1016/j.ins.2024.121640
– ident: ref28
  doi: 10.1109/TSMC.2013.2295351
– ident: ref9
  doi: 10.1016/j.procs.2022.01.020
– ident: ref17
  doi: 10.1109/TNNLS.2013.2280013
– ident: ref37
  doi: 10.1016/j.ins.2017.05.005
– ident: ref44
  doi: 10.1109/TAC.2018.2790260
– ident: ref31
  doi: 10.1109/TNNLS.2021.3135405
– ident: ref21
  doi: 10.1109/JAS.2022.105692
– ident: ref11
  doi: 10.1109/TCST.2017.2789191
– ident: ref40
  doi: 10.1109/JAS.2023.123684
– ident: ref57
  doi: 10.1109/TNNLS.2022.3143527
– ident: ref6
  doi: 10.1109/TNNLS.2022.3213825
– ident: ref49
  doi: 10.1109/TNNLS.2013.2281663
– ident: ref38
  doi: 10.1109/TSMC.2017.2771516
– ident: ref8
  doi: 10.1016/j.asoc.2024.111687
– ident: ref36
  doi: 10.1109/TCYB.2025.3530951
– ident: ref2
  doi: 10.1109/TNNLS.2022.3186528
– ident: ref12
  doi: 10.1109/JAS.2024.124509
– ident: ref5
  doi: 10.23919/cje.2023.00.288
– ident: ref47
  doi: 10.1109/TCYB.2022.3232599
– ident: ref39
  doi: 10.1109/TIE.2017.2772162
– ident: ref48
  doi: 10.1109/TSMCB.2012.2216523
– ident: ref43
  doi: 10.1109/TCYB.2014.2354377
– ident: ref51
  doi: 10.1109/TAC.2019.2926167
– ident: ref29
  doi: 10.1109/TIM.2023.3325870
– ident: ref18
  doi: 10.1109/TNNLS.2020.3009015
– ident: ref53
  doi: 10.1109/TNNLS.2020.2967871
– ident: ref56
  doi: 10.1002/rnc.5132
– ident: ref14
  doi: 10.1016/j.neucom.2024.128837
– ident: ref13
  doi: 10.1109/TAC.2020.3024161
– ident: ref45
  doi: 10.1109/TCYB.2021.3108034
– ident: ref27
  doi: 10.1201/9781003143444
– ident: ref52
  doi: 10.1109/TCYB.2021.3107801
– ident: ref10
  doi: 10.22190/FUME240914044P
– ident: ref26
  doi: 10.1109/LRA.2021.3070252
– ident: ref32
  doi: 10.1109/TCYB.2016.2542923
– ident: ref30
  doi: 10.1016/j.neunet.2021.08.025
– ident: ref35
  doi: 10.1109/TNNLS.2022.3178746
– ident: ref54
  doi: 10.1109/TNNLS.2023.3326397
– ident: ref22
  doi: 10.1007/978-3-319-50815-3
– ident: ref24
  doi: 10.1109/JAS.2023.123843
– ident: ref20
  doi: 10.1109/TCYB.2022.3233593
– ident: ref25
  doi: 10.1109/TRO.2019.2920206
– ident: ref42
  doi: 10.1016/j.automatica.2025.112168
– ident: ref19
  doi: 10.1109/TNNLS.2022.3152268
– ident: ref4
  doi: 10.1109/TCYB.2015.2417170
– ident: ref34
  doi: 10.1109/TNNLS.2017.2751018
SSID ssj0000605649
Score 2.4904306
Snippet Data-driven methods have significantly advanced optimal learning control, but some approaches overlook systematic considerations of data utilization, including...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 17114
SubjectTerms Adaptation models
Adaptive dynamic programming (ADP)
Aerospace electronics
approximate errors
Artificial neural networks
Cost function
Costs
Data models
data-driven
Heuristic algorithms
learning systems
neural networks (NNs)
Optimal control
Q-learning
safe optimal control
Safety
Title Parallel Multistep Evaluation With Efficient Data Utilization for Safe Neural Critic Control and Its Application to Orbital Maneuver Systems
URI https://ieeexplore.ieee.org/document/11017769
https://www.ncbi.nlm.nih.gov/pubmed/40440136
https://www.proquest.com/docview/3214299678
Volume 36
WOSCitedRecordID wos001499469800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0B4tBLaQst2w80SL2hQGJnY-eI6KJWgi3SUnVvkT8mAgll0ZLlV_CjO3aS3ROHnpJDHDt5Y80b2zMP4Lska6wQPjEkZJIXpBOtiyxRmTU101OV26hacqWmUz2flzd9snrMhSGiePiMTsNt3Mv3C7cKS2VnWbAfVZTbsM2XLllrvaCSMjEvIt0VWSESIdV8SJJJy7Pb6fRqxuGgGJ_KsWK_GrSL8qC3nMXqzBufFEVWXueb0e9c7v3niN_B255g4nlnEe9hi5oPsDeIN2A_l_fh5cYsg47KA8YcXAb7ESfr0t_49769w0msL8E94A_TGvzT3j_0aZvIXBdnpiYM1T24v04yAS-6k-9oGo-_2ic83-yPY7vA30sbRErw2jS0eg7D6QqmH8DscnJ78TPppRkSJ5RqE1mnTkmfaleMrWOa47LSUG1tQUJbYV0mrfQcXDoOOX1uhK0zr2sl6pQjNPkRdppFQ4eAXomUm5TSKZ1b4rbekVUyp1qXRpkRnAzQVI9d_Y0qxi1pWUVMq4Bp1WM6goOAwebJ_veP4HiAs-LpE_ZE-DsXq6cq6DSxR2aXPYJPHc7r1oN5fH7lrV_gTei8O3H2FXba5Yq-wa57ZtCWR2yjc30UbfQf4hXjXg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB3xUYleCi203RboVOqtCiR2NnaOCBaBWFKk3ap7i_wVFQll0ZLlV_RHd-wkuycO3HKIY8dvrHlje-YB_OBOK82YjZRjPEozJyMpsyQSiVYV0VOR6qBaMhZFIWez_K5LVg-5MM65cPnMnfjHcJZv52bpt8pOE28_Iss3YXuYpixu07VWWyoxUfMsEF6WZCxiXMz6NJk4P50WxXhCASEbnvChIM_q1YtSr7ichPrMa68UZFZeZpzB81zuvnLMe_Cuo5h41trEe9hw9QfY7eUbsFvN-_DvTi28ksoDhixcgvsRR6vi3_jnvvmLo1BhgnrAC9Uo_N3cP3SJm0hsFyeqcujre1B_rWgCnrd331HVFq-bJzxbn5BjM8dfC-1lSvBW1W757IfTlkw_gMnlaHp-FXXiDJFhQjQRr2IjuI2lyYbaENExSa5cpXXmmNRMm4Rrbim8NBR02lQxXSVWVoJVMcVo_CNs1fPafQa0gsXUJOdGyFQ7amuN04KnrpK5EmoAP3toyse2AkcZIpc4LwOmpce07DAdwIHHYP1mN_0D-N7DWdIC8qci9J_z5VPplZrIJ5PTHsCnFudV6948vrzw1W-wczW9HZfj6-LmK7z1A2nvnx3CVrNYuiN4Y54JwMVxsNT_fU_lvQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+Multistep+Evaluation+With+Efficient+Data+Utilization+for+Safe+Neural+Critic+Control+and+Its+Application+to+Orbital+Maneuver+Systems&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Wang%2C+Jiangyu&rft.au=Wang%2C+Ding&rft.au=Ren%2C+Jin&rft.au=Liu%2C+Derong&rft.date=2025-09-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=36&rft.issue=9&rft.spage=17114&rft.epage=17127&rft_id=info:doi/10.1109%2FTNNLS.2025.3570716&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2025_3570716
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon