Adaptive entropy-coded predictive vector quantization of images

The authors consider 2-D predictive vector quantization (PVQ) of images subject to an entropy constraint and demonstrate the substantial performance improvements over existing unconstrained approaches. They describe a simple adaptive buffer-instrumented implementation of this 2-D entropy-coded PVQ s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing Jg. 40; H. 3; S. 633 - 644
Hauptverfasser: Modestino, J.W., Kim, Y.H.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.03.1992
Schlagworte:
ISSN:1053-587X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The authors consider 2-D predictive vector quantization (PVQ) of images subject to an entropy constraint and demonstrate the substantial performance improvements over existing unconstrained approaches. They describe a simple adaptive buffer-instrumented implementation of this 2-D entropy-coded PVQ scheme which can accommodate the associated variable-length entropy coding while completely eliminating buffer overflow/underflow problems at the expense of only a slight degradation in performance. This scheme, called 2-D PVQ/AECQ (adaptive entropy-coded quantization), is shown to result in excellent rate-distortion performance and impressive quality reconstructions of real-world images. Indeed, the real-world coding results shown demonstrate little distortion at rates as low as 0.5 b/pixel.< >
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1053-587X
DOI:10.1109/78.120806