Enhancing Ground Vibration Prediction in Mine Blasting: A Committee Machine Intelligent System Optimized with Metaheuristic Algorithms
Ground vibrations resulting from mine blasting pose significant risks to nearby structures and the environment. This paper introduces an advanced framework employing Committee Machine Intelligent Systems (CMIS) optimized by cutting-edge metaheuristic algorithms to predict ground vibrations. Initiall...
Saved in:
| Published in: | Natural resources research (New York, N.Y.) Vol. 34; no. 6; pp. 3449 - 3475 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer Nature B.V
01.12.2025
|
| Subjects: | |
| ISSN: | 1520-7439, 1573-8981 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Ground vibrations resulting from mine blasting pose significant risks to nearby structures and the environment. This paper introduces an advanced framework employing Committee Machine Intelligent Systems (CMIS) optimized by cutting-edge metaheuristic algorithms to predict ground vibrations. Initially, cascaded feedforward neural networks (CFNN) were developed using Levenberg-Marquardt algorithm and Bayesian regularization (BR). These neural networks were integrated into a CMIS to enhance prediction accuracy. Optimization of the CMIS was carried out using four metaheuristic algorithms, including the grey wolf optimizer (GWO), Harris hawks optimization (HHO), artificial bee colony, and genetic algorithm. Comprehensive evaluation metrics such as quantile-quantile plots, Taylor diagrams, and error analysis were employed to assess model performance. Results indicated that the CMIS model optimized by HHO provided the most accurate ground vibration predictions, surpassing existing models in the literature. Sensitivity analysis identified weight charge per delay as the most critical factor influencing ground vibration. Moreover, the uncertainty analysis indicated that the CFNN-BR model had the narrowest uncertainty band, followed by the CMIS-GWO model. The study underscores the potential of integrating CMIS with metaheuristic algorithms for precise and reliable vibration prediction in mining operations. |
|---|---|
| AbstractList | Ground vibrations resulting from mine blasting pose significant risks to nearby structures and the environment. This paper introduces an advanced framework employing Committee Machine Intelligent Systems (CMIS) optimized by cutting-edge metaheuristic algorithms to predict ground vibrations. Initially, cascaded feedforward neural networks (CFNN) were developed using Levenberg-Marquardt algorithm and Bayesian regularization (BR). These neural networks were integrated into a CMIS to enhance prediction accuracy. Optimization of the CMIS was carried out using four metaheuristic algorithms, including the grey wolf optimizer (GWO), Harris hawks optimization (HHO), artificial bee colony, and genetic algorithm. Comprehensive evaluation metrics such as quantile-quantile plots, Taylor diagrams, and error analysis were employed to assess model performance. Results indicated that the CMIS model optimized by HHO provided the most accurate ground vibration predictions, surpassing existing models in the literature. Sensitivity analysis identified weight charge per delay as the most critical factor influencing ground vibration. Moreover, the uncertainty analysis indicated that the CFNN-BR model had the narrowest uncertainty band, followed by the CMIS-GWO model. The study underscores the potential of integrating CMIS with metaheuristic algorithms for precise and reliable vibration prediction in mining operations. |
| Author | Hasanipanah, Mahdi Amnieh, Hassan Bakhshandeh |
| Author_xml | – sequence: 1 givenname: Mahdi surname: Hasanipanah fullname: Hasanipanah, Mahdi – sequence: 2 givenname: Hassan Bakhshandeh surname: Amnieh fullname: Amnieh, Hassan Bakhshandeh |
| BookMark | eNp9kMtOwzAQRS1UJFrgB1hZYh3wI3FidqUqD4mqSDy2luNMWleJU2xXqHwA303asmLBaq5m7r0jnREauM4BQheUXFFC8utAKcl4QliW9IIWiThCQ5rlPClkQQc7zUiSp1yeoFEIK9KHeJEN0ffULbUz1i3wve82rsLvtvQ62s7hZw-VNXtpHZ5ZB_i20SH25hs8xpOubW2MAHimzXJ3fXQRmsYuwEX8sg0RWjxfR9vaL6jwp41LPIOol7Dxtm8xeNwsOt-v23CGjmvdBDj_nafo7W76OnlInub3j5PxU2JYnseE6jQrSZ3rlKRGSiN0wUQKMhNlSUzKBJFVVQspNeN1AVBCZioDOtU5l5wbfoouD71r331sIES16jbe9S8VZyIjglImehc7uIzvQvBQq7W3rfZbRYna8VYH3qrnrfa81S5U_AkZG_cgo9e2-S_6A85iiWE |
| CitedBy_id | crossref_primary_10_1007_s11053_025_10546_2 crossref_primary_10_1016_j_dt_2025_06_019 |
| Cites_doi | 10.1007/s00521-012-0856-y 10.1007/s00366-020-01217-2 10.1007/s00521-020-04822-w 10.1007/s12517-022-09665-4 10.1080/17480930.2020.1734151 10.3390/su15065470 10.1007/s10064-024-03987-1 10.1038/s41598-024-81218-z 10.1016/j.fuel.2018.08.136 10.1016/j.ress.2022.109032 10.3390/su15108424 10.1007/s00366-021-01381-z 10.3389/fpubh.2022.1094771 10.1016/j.advengsoft.2013.12.007 10.1007/s11053-019-09461-0 10.1007/s00500-023-08233-6 10.1007/s10064-025-04178-2 10.1007/s00521-016-2577-0 10.1016/j.measurement.2024.115373 10.1007/s00366-016-0462-1 10.1016/j.jtice.2020.08.001 10.1007/s11053-019-09597-z 10.1007/s00366-020-00937-9 10.1007/s11803-022-2125-0 10.1007/s11053-021-09890-w 10.1016/j.jclepro.2017.09.092 10.1016/j.soildyn.2010.05.005 10.1007/s00366-009-0157-y 10.1016/j.rockmb.2024.100166 10.1007/s00366-017-0501-6 10.3390/math10081271 10.1038/s41598-019-50262-5 10.7551/mitpress/1090.001.0001 10.1016/j.eswa.2023.121616 10.1016/j.ijhydene.2020.09.145 10.3390/sym15010054 10.1007/s12665-016-5747-6 10.1016/j.coal.2023.104294 10.1007/s12530-018-9255-7 10.1038/s41598-023-33796-7 10.1007/s13762-016-1192-z 10.1007/s00366-019-00754-9 10.1007/s00366-021-01418-3 10.1007/s00521-021-06776-z 10.3390/app13127166 10.1016/j.future.2019.02.028 10.3390/geosciences13100294 10.1007/s12665-016-5961-2 10.1007/s00366-019-00711-6 10.1177/1077546312437002 10.1007/s00366-019-00908-9 10.1016/j.tust.2022.104978 10.1016/j.measurement.2022.111887 10.1177/09574565221114662 10.1007/s11053-020-09730-3 10.1021/acs.energyfuels.0c00114 10.1007/s00366-021-01393-9 10.1109/ACCESS.2022.3193573 10.3390/app13053128 10.1007/s10064-020-01788-w 10.1038/s41598-024-70939-w 10.1007/s11600-020-00532-y 10.1007/s00521-021-06600-8 10.1007/s11600-019-00304-3 10.1061/(ASCE)0887-3828(2005)19:3(222) 10.1080/17480930.2023.2254147 10.1007/s11053-019-09492-7 10.1007/s10064-014-0657-x 10.1016/j.jrmge.2021.07.007 10.1007/s10064-022-03047-6 10.1016/j.measurement.2025.117180 10.1007/s11053-020-09764-7 10.1007/s10064-024-03941-1 10.1016/j.rser.2017.07.049 10.1038/s41598-020-76569-2 10.3390/app9183755 10.1007/s40515-023-00343-w 10.1007/s11053-023-10259-4 10.1007/s00366-019-00816-y 10.1007/s11053-019-09515-3 10.1016/j.measurement.2015.07.019 10.1007/s10064-024-03980-8 |
| ContentType | Journal Article |
| Copyright | International Association for Mathematical Geosciences 2025. |
| Copyright_xml | – notice: International Association for Mathematical Geosciences 2025. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s11053-025-10518-6 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Engineering |
| EISSN | 1573-8981 |
| EndPage | 3475 |
| ExternalDocumentID | 10_1007_s11053_025_10518_6 |
| GroupedDBID | -Y2 .86 .VR 06D 0R~ 0VY 123 1N0 2.D 203 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67M 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHIR ADHKG ADIMF ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AETLH AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFHD AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG ATCPS ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BSONS CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV LAK LLZTM M4Y MA- N9A NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 PATMY PCBAR PDBOC PF0 PHGZM PHGZT PQGLB PT4 PT5 PYCSY QOK QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z8Z ZMTXR ~02 ~A9 ~KM AESKC |
| ID | FETCH-LOGICAL-c277t-1a45b0f7a404c99c6a8264e956bb0c42609ddf699a23f8eebe5cdcea4a73933c3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001506890100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1520-7439 |
| IngestDate | Wed Nov 05 08:45:14 EST 2025 Sat Nov 29 06:58:10 EST 2025 Tue Nov 18 21:50:02 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c277t-1a45b0f7a404c99c6a8264e956bb0c42609ddf699a23f8eebe5cdcea4a73933c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3265061126 |
| PQPubID | 2043663 |
| PageCount | 27 |
| ParticipantIDs | proquest_journals_3265061126 crossref_primary_10_1007_s11053_025_10518_6 crossref_citationtrail_10_1007_s11053_025_10518_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-12-00 20251201 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-00 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Natural resources research (New York, N.Y.) |
| PublicationYear | 2025 |
| Publisher | Springer Nature B.V |
| Publisher_xml | – name: Springer Nature B.V |
| References | P Ragam (10518_CR67) 2022; 53 J Ye (10518_CR81) 2021; 30 X Ding (10518_CR13) 2020; 37 H Guo (10518_CR29) 2021; 37 ML Li (10518_CR50) 2023; 134 PP Roy (10518_CR69) 1991; 239 L Nikakhtar (10518_CR62) 2023; 14 H Fattahi (10518_CR21) 2023; 28 C Li (10518_CR48) 2023; 13 M Jamei (10518_CR41) 2021; 13 X Liao (10518_CR51) 2020; 36 J Zhou (10518_CR85) 2020; 79 Z Luo (10518_CR52) 2020; 36 M Hasanipanah (10518_CR32) 2015; 75 B He (10518_CR34) 2024; 237 J Zeng (10518_CR83) 2022; 38 M Nait Amar (10518_CR56) 2020; 45 H Nguyen (10518_CR61) 2023; 38 J Zhou (10518_CR86) 2021; 37 H Nguyen (10518_CR60) 2023; 231 10518_CR28 A Rabbani (10518_CR66) 2023; 11 T Dogruer (10518_CR18) 2023; 15 H Yang (10518_CR80) 2022; 38 J Zhou (10518_CR88) 2022; 38 Y Fissha (10518_CR22) 2023; 13 K Song (10518_CR70) 2023; 82 B Wu (10518_CR73) 2024; 83 H Nguyen (10518_CR59) 2023; 275 Y Fissha (10518_CR24) 2025; 4 B Ke (10518_CR44) 2021; 30 C Li (10518_CR49) 2023; 32 D Karaboga (10518_CR43) 2005 DJ Armaghani (10518_CR4) 2018; 29 S Ghoraba (10518_CR27) 2016; 75 M Khandelwal (10518_CR46) 2011; 27 AA Heidari (10518_CR35) 2019; 97 NJ Nilsson (10518_CR63) 1965 J Zhou (10518_CR87) 2021; 35 Y Jiang (10518_CR42) 2022; 10 E Ghasemi (10518_CR26) 2013; 19 W Chen (10518_CR9) 2019; 9 H Yang (10518_CR77) 2020; 29 Z Zhou (10518_CR90) 2024; 83 H Fattahi (10518_CR20) 2021; 30 M Monjezi (10518_CR55) 2013; 22 X Ding (10518_CR17) 2025; 84 JH Holland (10518_CR38) 1992 Y Qiu (10518_CR65) 2022; 38 10518_CR12 H Yang (10518_CR79) 2022; 15 C Wang (10518_CR72) 2023; 15 A Banharnsakun (10518_CR6) 2019; 10 X Ding (10518_CR16) 2025; 250 B Keshtegar (10518_CR45) 2023; 10 H Nguyen (10518_CR58) 2019; 67 A Rostami (10518_CR68) 2019; 236 Y Chen (10518_CR10) 2022; 10 P Yan (10518_CR74) 2016; 75 Y Yan (10518_CR75) 2024; 14 EF Gad (10518_CR25) 2005; 19 XN Bui (10518_CR7) 2019; 9 RS Faradonbeh (10518_CR19) 2017; 33 J Huang (10518_CR40) 2020; 10 AI Lawal (10518_CR47) 2021; 69 A Hemmati-Sarapardeh (10518_CR37) 2020; 34 A Agrawal (10518_CR2) 2022; 202 M Hasanipanah (10518_CR33) 2017; 33 H Yang (10518_CR78) 2020; 29 C Zhu (10518_CR91) 2022; 21 M Parsajoo (10518_CR64) 2022; 34 H Yang (10518_CR76) 2019; 31 M Nait Amar (10518_CR57) 2020; 113 J Sun (10518_CR71) 2024; 238 X Ding (10518_CR15) 2023; 15 D Zai (10518_CR82) 2024; 83 M Amiri (10518_CR3) 2020; 32 A Hemmati-Sarapardeh (10518_CR36) 2018; 81 M Monjezi (10518_CR54) 2010; 30 X Ding (10518_CR14) 2023; 33 Y Fissha (10518_CR23) 2024; 14 S Mirjalili (10518_CR53) 2014; 69 E Bakhtavar (10518_CR5) 2017; 14 J Guo (10518_CR30) 2023; 13 MSS Abujazar (10518_CR1) 2018; 170 X Zhang (10518_CR84) 2020; 29 J Zhou (10518_CR89) 2023; 40 Y Dai (10518_CR11) 2022; 34 XN Bui (10518_CR8) 2020; 29 M Hajihassani (10518_CR31) 2015; 74 S Hosseini (10518_CR39) 2023; 13 |
| References_xml | – volume: 22 start-page: 1637 issue: 7–8 year: 2013 ident: 10518_CR55 publication-title: Neural Computing and Applications doi: 10.1007/s00521-012-0856-y – volume: 38 start-page: 2469 year: 2022 ident: 10518_CR80 publication-title: Engineering with Computers doi: 10.1007/s00366-020-01217-2 – volume: 32 start-page: 14681 year: 2020 ident: 10518_CR3 publication-title: Neural Computing and Applications doi: 10.1007/s00521-020-04822-w – volume: 15 start-page: 461 year: 2022 ident: 10518_CR79 publication-title: Arabian Journal of Geosciences doi: 10.1007/s12517-022-09665-4 – volume: 35 start-page: 48 issue: 1 year: 2021 ident: 10518_CR87 publication-title: International Journal of Mining, Reclamation and Environment doi: 10.1080/17480930.2020.1734151 – volume: 15 start-page: 5470 year: 2023 ident: 10518_CR72 publication-title: Sustainability doi: 10.3390/su15065470 – volume: 83 start-page: 493 year: 2024 ident: 10518_CR82 publication-title: Bulletin of Engineering Geology and the Environment doi: 10.1007/s10064-024-03987-1 – volume: 14 start-page: 30793 year: 2024 ident: 10518_CR75 publication-title: Scientific Reports doi: 10.1038/s41598-024-81218-z – volume: 236 start-page: 110 year: 2019 ident: 10518_CR68 publication-title: Fuel doi: 10.1016/j.fuel.2018.08.136 – ident: 10518_CR28 – volume: 231 year: 2023 ident: 10518_CR60 publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2022.109032 – volume: 15 start-page: 8424 issue: 10 year: 2023 ident: 10518_CR15 publication-title: Sustainability doi: 10.3390/su15108424 – volume: 38 start-page: 2069 year: 2022 ident: 10518_CR83 publication-title: Engineering with Computers doi: 10.1007/s00366-021-01381-z – volume: 10 start-page: 1094771 year: 2023 ident: 10518_CR45 publication-title: Frontiers in Public Health doi: 10.3389/fpubh.2022.1094771 – volume: 69 start-page: 46 year: 2014 ident: 10518_CR53 publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2013.12.007 – volume: 29 start-page: 571 year: 2020 ident: 10518_CR8 publication-title: Natural Resources Research doi: 10.1007/s11053-019-09461-0 – volume: 28 start-page: 461 issue: 1 year: 2023 ident: 10518_CR21 publication-title: Soft Computing doi: 10.1007/s00500-023-08233-6 – volume: 84 start-page: 150 issue: 3 year: 2025 ident: 10518_CR17 publication-title: Bulletin of Engineering Geology and the Environment doi: 10.1007/s10064-025-04178-2 – volume: 29 start-page: 457 issue: 9 year: 2018 ident: 10518_CR4 publication-title: Neural Computing and Applications doi: 10.1007/s00521-016-2577-0 – volume: 238 year: 2024 ident: 10518_CR71 publication-title: Measurement doi: 10.1016/j.measurement.2024.115373 – volume: 33 start-page: 173 year: 2017 ident: 10518_CR33 publication-title: Engineering with Computers doi: 10.1007/s00366-016-0462-1 – volume: 113 start-page: 165 year: 2020 ident: 10518_CR57 publication-title: Journal of the Taiwan Institute of Chemical Engineers doi: 10.1016/j.jtice.2020.08.001 – volume: 29 start-page: 807 year: 2020 ident: 10518_CR78 publication-title: Natural Resources Research doi: 10.1007/s11053-019-09597-z – volume: 37 start-page: 2273 issue: 3 year: 2020 ident: 10518_CR13 publication-title: Engineering with Computers doi: 10.1007/s00366-020-00937-9 – volume: 21 start-page: 861 year: 2022 ident: 10518_CR91 publication-title: Earthquake Engineering and Engineering Vibration doi: 10.1007/s11803-022-2125-0 – volume-title: Learning Machines: Foundations of Trainable Pattern-Classifying Systems year: 1965 ident: 10518_CR63 – volume: 30 start-page: 3853 year: 2021 ident: 10518_CR44 publication-title: Natural Resources Research doi: 10.1007/s11053-021-09890-w – volume: 170 start-page: 147 year: 2018 ident: 10518_CR1 publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2017.09.092 – volume: 30 start-page: 1233 issue: 11 year: 2010 ident: 10518_CR54 publication-title: Soil Dynamics and Earthquake Engineering doi: 10.1016/j.soildyn.2010.05.005 – volume: 27 start-page: 117 issue: 2 year: 2011 ident: 10518_CR46 publication-title: Engineering with Computers doi: 10.1007/s00366-009-0157-y – volume: 4 year: 2025 ident: 10518_CR24 publication-title: Rock Mechanics Bulletin doi: 10.1016/j.rockmb.2024.100166 – volume: 239 start-page: 215 year: 1991 ident: 10518_CR69 publication-title: Colliery Guardian – volume: 33 start-page: 835 issue: 4 year: 2017 ident: 10518_CR19 publication-title: Engineering with Computers doi: 10.1007/s00366-017-0501-6 – volume: 14 start-page: 217 issue: 1 year: 2023 ident: 10518_CR62 publication-title: Journal of Mining and Environment – volume: 10 start-page: 1271 issue: 8 year: 2022 ident: 10518_CR10 publication-title: Mathematics doi: 10.3390/math10081271 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 10518_CR7 publication-title: Scientific Reports doi: 10.1038/s41598-019-50262-5 – volume-title: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence year: 1992 ident: 10518_CR38 doi: 10.7551/mitpress/1090.001.0001 – volume: 237 year: 2024 ident: 10518_CR34 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.121616 – volume: 45 start-page: 33274 year: 2020 ident: 10518_CR56 publication-title: International Journal of Hydrogen Energy doi: 10.1016/j.ijhydene.2020.09.145 – volume: 15 start-page: 54 issue: 1 year: 2023 ident: 10518_CR18 publication-title: Symmetry doi: 10.3390/sym15010054 – volume: 75 start-page: 949 year: 2016 ident: 10518_CR74 publication-title: Environmental Earth Sciences doi: 10.1007/s12665-016-5747-6 – volume: 33 start-page: 567 issue: 6 year: 2023 ident: 10518_CR14 publication-title: Geomechanics and Engineering – volume: 275 year: 2023 ident: 10518_CR59 publication-title: International Journal of Coal Geology doi: 10.1016/j.coal.2023.104294 – volume: 10 start-page: 679 year: 2019 ident: 10518_CR6 publication-title: Evolving Systems doi: 10.1007/s12530-018-9255-7 – volume: 13 start-page: 6591 year: 2023 ident: 10518_CR39 publication-title: Scientific Reports doi: 10.1038/s41598-023-33796-7 – volume: 14 start-page: 717 year: 2017 ident: 10518_CR5 publication-title: International journal of environmental science and technology doi: 10.1007/s13762-016-1192-z – volume: 36 start-page: 1117 year: 2020 ident: 10518_CR52 publication-title: Engineering with Computers doi: 10.1007/s00366-019-00754-9 – volume: 38 start-page: 4197 year: 2022 ident: 10518_CR88 publication-title: Engineering with Computers doi: 10.1007/s00366-021-01418-3 – volume: 34 start-page: 6273 year: 2022 ident: 10518_CR11 publication-title: Neural Computing and Applications doi: 10.1007/s00521-021-06776-z – volume: 13 start-page: 7166 issue: 12 year: 2023 ident: 10518_CR30 publication-title: Applied Sciences doi: 10.3390/app13127166 – volume: 97 start-page: 849 year: 2019 ident: 10518_CR35 publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2019.02.028 – volume: 13 start-page: 294 year: 2023 ident: 10518_CR48 publication-title: Geosciences doi: 10.3390/geosciences13100294 – volume: 40 start-page: 617 issue: 2 year: 2023 ident: 10518_CR89 publication-title: Mining, Metallurgy & Exploration – volume: 75 start-page: 1137 year: 2016 ident: 10518_CR27 publication-title: Environmental Earth Sciences doi: 10.1007/s12665-016-5961-2 – volume: 36 start-page: 499 year: 2020 ident: 10518_CR51 publication-title: Engineering with Computers doi: 10.1007/s00366-019-00711-6 – volume: 19 start-page: 755 issue: 5 year: 2013 ident: 10518_CR26 publication-title: Journal of Vibration and Control doi: 10.1177/1077546312437002 – volume: 37 start-page: 1679 year: 2021 ident: 10518_CR86 publication-title: Engineering with Computers doi: 10.1007/s00366-019-00908-9 – volume: 134 year: 2023 ident: 10518_CR50 publication-title: Tunnelling and Underground Space Technology doi: 10.1016/j.tust.2022.104978 – volume: 202 year: 2022 ident: 10518_CR2 publication-title: Measurement doi: 10.1016/j.measurement.2022.111887 – ident: 10518_CR12 – volume: 53 start-page: 404 year: 2022 ident: 10518_CR67 publication-title: Noise & Vibration Worldwide doi: 10.1177/09574565221114662 – volume: 30 start-page: 225 year: 2021 ident: 10518_CR81 publication-title: Natural Resources Research doi: 10.1007/s11053-020-09730-3 – volume: 34 start-page: 4761 year: 2020 ident: 10518_CR37 publication-title: Energy & Fuels doi: 10.1021/acs.energyfuels.0c00114 – volume: 38 start-page: 4145 issue: Suppl 5 year: 2022 ident: 10518_CR65 publication-title: Engineering with Computers doi: 10.1007/s00366-021-01393-9 – volume: 10 start-page: 77857 year: 2022 ident: 10518_CR42 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3193573 – volume: 13 start-page: 3128 issue: 5 year: 2023 ident: 10518_CR22 publication-title: Applied Sciences doi: 10.3390/app13053128 – volume-title: An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical Report-tr06 year: 2005 ident: 10518_CR43 – volume: 79 start-page: 4265 year: 2020 ident: 10518_CR85 publication-title: Bulletin of Engineering Geology and the Environment doi: 10.1007/s10064-020-01788-w – volume: 14 start-page: 20026 year: 2024 ident: 10518_CR23 publication-title: Scientific Reports doi: 10.1038/s41598-024-70939-w – volume: 69 start-page: 161 year: 2021 ident: 10518_CR47 publication-title: Acta Geophysica doi: 10.1007/s11600-020-00532-y – volume: 34 start-page: 3263 year: 2022 ident: 10518_CR64 publication-title: Neural Computing and Applications doi: 10.1007/s00521-021-06600-8 – volume: 31 start-page: 629 issue: 6 year: 2019 ident: 10518_CR76 publication-title: Steel and Composite Structures – volume: 67 start-page: 1025 issue: 4 year: 2019 ident: 10518_CR58 publication-title: Acta Geophysica doi: 10.1007/s11600-019-00304-3 – volume: 19 start-page: 222 issue: 3 year: 2005 ident: 10518_CR25 publication-title: Journal of Performance of Constructed Facilities doi: 10.1061/(ASCE)0887-3828(2005)19:3(222) – volume: 38 start-page: 99 issue: 2 year: 2023 ident: 10518_CR61 publication-title: International Journal of Mining, Reclamation and Environment doi: 10.1080/17480930.2023.2254147 – volume: 29 start-page: 711 year: 2020 ident: 10518_CR84 publication-title: Natural Resources Research doi: 10.1007/s11053-019-09492-7 – volume: 74 start-page: 873 year: 2015 ident: 10518_CR31 publication-title: Bulletin of Engineering Geology and the Environment doi: 10.1007/s10064-014-0657-x – volume: 13 start-page: 1438 issue: 6 year: 2021 ident: 10518_CR41 publication-title: Journal of Rock Mechanics and Geotechnical Engineering doi: 10.1016/j.jrmge.2021.07.007 – volume: 82 start-page: 27 year: 2023 ident: 10518_CR70 publication-title: Bulletin of Engineering Geology and the Environment doi: 10.1007/s10064-022-03047-6 – volume: 250 year: 2025 ident: 10518_CR16 publication-title: Measurement doi: 10.1016/j.measurement.2025.117180 – volume: 30 start-page: 1849 year: 2021 ident: 10518_CR20 publication-title: Natural Resources Research doi: 10.1007/s11053-020-09764-7 – volume: 83 start-page: 444 year: 2024 ident: 10518_CR90 publication-title: Bulletin of Engineering Geology and the Environment doi: 10.1007/s10064-024-03941-1 – volume: 81 start-page: 313 year: 2018 ident: 10518_CR36 publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2017.07.049 – volume: 10 start-page: 1 year: 2020 ident: 10518_CR40 publication-title: Scientific Reports doi: 10.1038/s41598-020-76569-2 – volume: 9 start-page: 3755 issue: 18 year: 2019 ident: 10518_CR9 publication-title: Applied Sciences doi: 10.3390/app9183755 – volume: 11 start-page: 1708 issue: 4 year: 2023 ident: 10518_CR66 publication-title: Transportation Infrastructure Geotechnology doi: 10.1007/s40515-023-00343-w – volume: 32 start-page: 2995 issue: 6 year: 2023 ident: 10518_CR49 publication-title: Natural Resources Research doi: 10.1007/s11053-023-10259-4 – volume: 37 start-page: 173 year: 2021 ident: 10518_CR29 publication-title: Engineering with Computers doi: 10.1007/s00366-019-00816-y – volume: 29 start-page: 739 year: 2020 ident: 10518_CR77 publication-title: Natural Resources Research doi: 10.1007/s11053-019-09515-3 – volume: 75 start-page: 289 year: 2015 ident: 10518_CR32 publication-title: Measurement doi: 10.1016/j.measurement.2015.07.019 – volume: 83 start-page: 461 year: 2024 ident: 10518_CR73 publication-title: Bulletin of Engineering Geology and the Environment doi: 10.1007/s10064-024-03980-8 |
| SSID | ssj0007385 |
| Score | 2.4005857 |
| Snippet | Ground vibrations resulting from mine blasting pose significant risks to nearby structures and the environment. This paper introduces an advanced framework... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 3449 |
| SubjectTerms | Accuracy Algorithms Artificial neural networks Bayesian analysis Blasting Error analysis Explosives Genetic algorithms Ground motion Heuristic methods Mathematical models Neural networks Optimization Optimization algorithms Predictions Quantiles Regularization Sensitivity analysis Support vector machines Swarm intelligence Uncertainty analysis Variables Velocity Vibration Vibration analysis Vibrations |
| Title | Enhancing Ground Vibration Prediction in Mine Blasting: A Committee Machine Intelligent System Optimized with Metaheuristic Algorithms |
| URI | https://www.proquest.com/docview/3265061126 |
| Volume | 34 |
| WOSCitedRecordID | wos001506890100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1573-8981 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007385 issn: 1520-7439 databaseCode: RSV dateStart: 19990301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1bS8MwFIDDGAr64GUqTqfkwTctNml6823Kpj5sDi9jbyVNsgtsnXSdoD_A321O1k0HKoy-lNKEkpOeS3LyHYTOlCKSOpJY1KWxxRQnFmeB0DEP86SIfSJsbopN-M1m0OmErQK6-HMH_3KiDZQLe41AzHRJYAFfm3gUyhU8PrUXahewLAaOquMh8LLzEzK_d7FshZaVsLEs9e3VvmkHbeUeJK7ORL6LCiopoc0fXMESWr819Xrf99BnLekDUSPpYVhlSiRuQ3wM0sCtFDZpzO0gwQ3dHF9rXxryoK9wFcPRkUGWKYUbJuFS4fsFvjPDM9I5ftAaZzT4UBLDgi5uqIz31XRGf8bVYW-c6sejyT56qdeeb-6svPSCJajvZxbhzI3trs-ZzUQYCo_rMIQpHUzFsS2Aah9K2fXCkFOnGyg9E1whheKMA2HPEc4BKibjRB0iTBwmqNCeQGxLxgOmL1-rEYd5ynEdm5URmYsiEjmXHMpjDKNvojKMdqRHOzKjHXlldL5o8zqjcvz7dmUu4Sj_QyeRdltd7csQ6h2t1Nkx2qBG7pDRUkHFLJ2qE7Qm3rLBJD01U_ILhVLXpg |
| linkProvider | Springer Nature |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Ground+Vibration+Prediction+in+Mine+Blasting%3A+A+Committee+Machine+Intelligent+System+Optimized+with+Metaheuristic+Algorithms&rft.jtitle=Natural+resources+research+%28New+York%2C+N.Y.%29&rft.au=Hasanipanah%2C+Mahdi&rft.au=Amnieh%2C+Hassan+Bakhshandeh&rft.date=2025-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1520-7439&rft.eissn=1573-8981&rft.volume=34&rft.issue=6&rft.spage=3449&rft.epage=3475&rft_id=info:doi/10.1007%2Fs11053-025-10518-6&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-7439&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-7439&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-7439&client=summon |