Data-Driven Point-to-Point Finite-Iteration Learning Control for a Class of Nonlinear Systems With Output Saturation

This article considers the point-to-point tracking control problem for a class of unknown nonlinear discrete-time systems with output saturation. A novel data-driven finite-iteration learning control algorithm is proposed to achieve bounded tracking errors within limited iteration. First, considerin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics Jg. 55; H. 11; S. 5492 - 5503
Hauptverfasser: Bu, Xuhui, Yang, Chaohua, Lv, Lingling, Liang, Jiaqi, Hou, Zhongsheng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.11.2025
Schlagworte:
ISSN:2168-2267, 2168-2275, 2168-2275
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article considers the point-to-point tracking control problem for a class of unknown nonlinear discrete-time systems with output saturation. A novel data-driven finite-iteration learning control algorithm is proposed to achieve bounded tracking errors within limited iteration. First, considering the case that the model of the nonlinear discrete-time system is unknown, the relationship between the output of the system and the control inputs at these given points is derived using recursive evolution in the time domain. Then, the dynamic data-driven model of the system is established using iterative domain dynamic linearization techniques. Second, a finite finite-iteration learning algorithm based on the fractional power of error information is designed, and the finite-iteration convergence of the proposed algorithm is rigorously proven in theory. Finally, the effectiveness of the proposed method is validated by simulation results.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2025.3597743