Distributed Practical Fixed-Time Resource Allocation Algorithm for Disturbed Multiagent Systems: An Integrated Framework

The practical fixed-time resource allocation problem is investigated for multi-input-multi-output nonlinear uncertain multiagent systems with disturbed dynamics, subject to global equality and local inequality constraints. Due to the coexistence of distributed high-order dynamics system within agent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics Jg. 55; H. 6; S. 2820 - 2832
Hauptverfasser: Ao, Qingxiang, Li, Cheng, Niu, Ben, Zhao, Zhiliang, Yuan, Jiaxin, Chen, Sen, Yang, Xiaole
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.06.2025
Schlagworte:
ISSN:2168-2267, 2168-2275, 2168-2275
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The practical fixed-time resource allocation problem is investigated for multi-input-multi-output nonlinear uncertain multiagent systems with disturbed dynamics, subject to global equality and local inequality constraints. Due to the coexistence of distributed high-order dynamics system within agents and decision-making constraints, decision variables in resource allocation optimization problems cannot be directly obtained from the system. Existing strategies are insufficient to solve such complex fixed-time optimization control problems with coupled decision-making constraints. To address these challenges, a novel integrated framework is proposed, fusing symbolic-function-based fixed-time control theory with gradient consistency. The proposed algorithm is implemented through an output-feedback backstepping design process, which involves two stages. First, in the output-feedback design stage, a fixed-time high-order extended state observer estimates the uncertain dynamics and disturbances. Second, in the backstepping design stage, a time-switching controller is developed. This controller's virtual control law has two components: the first employs the proportional-integral control method to satisfy the equality constraints, while the second uses gradient information from the <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula>-exact penalty function to address the inequality constraints. Using the Lyapunov stability criterion, the proposed algorithm can ensure that all signals remain practical fixed-time stable, and that the error between the outputs of all agents and the optimal solution is maintained within a neighborhood of the origin. Finally, simulations are presented to demonstrate the effectiveness of the approach.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2025.3558787