Auto-Encoders Derivatives on Different Occluded Face Images: Comprehensive Review and New Results

This paper presents a novel approach for improving occluded face recognition performance using a family of autoencoders (AE) architectures. The proposed structures include four stages: image preprocessing, feature extraction using autoencoder derivatives, classification via a convolutional neural ne...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 13; s. 195080 - 195103
Hlavní autori: Masoudi, Azin, Ahmadi, Majid
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper presents a novel approach for improving occluded face recognition performance using a family of autoencoders (AE) architectures. The proposed structures include four stages: image preprocessing, feature extraction using autoencoder derivatives, classification via a convolutional neural network (CNN), and evaluation on occluded, non-occluded, and unseen datasets. Three deep autoencoder variants with combinational loss terms have been introduced to extract features from images: Convolutional Autoencoder (CAE), Self-Supervised Convolutional Autoencoder (SSCAE), and Smooth Convolutional Autoencoder (SCAE). A Masked Convolutional Autoencoder (MCAE) is also introduced to evaluate the capability of our convolutional autoencoder model in reconstructing images from masked inputs. Seven public datasets have been utilized to evaluate the performance of the proposed methods: the Extended Yale Dataset B, FERET, CMU Multi-PIE, Occluded ORL, Masked LFW (MLFW), AR, and RMFRD. Occluded ORL is used to analyze the performance of the proposed autoencoder derivatives on severely occluded images. MLFW is used to test the generalization of the proposed methods as an unseen dataset for the encoder part of the autoencoder variants. The recognition accuracies of 100% for FERET, 99.89% for the Extended Yale B, 99.45% for the CMU Multi-PIE, and 94.2% for unseen MLFW, and the ability to reconstruct masked ORL with 90% of masking, demonstrate that the proposed methods achieve significant improvement in accuracy for face recognition with acceptable computational cost in comparison to the state-of-the-art. To the best of our knowledge, this study is the first work where convolutional autoencoder architectures achieve such performance on occluded datasets without incorporating any occlusion-specific design.
AbstractList This paper presents a novel approach for improving occluded face recognition performance using a family of autoencoders (AE) architectures. The proposed structures include four stages: image preprocessing, feature extraction using autoencoder derivatives, classification via a convolutional neural network (CNN), and evaluation on occluded, non-occluded, and unseen datasets. Three deep autoencoder variants with combinational loss terms have been introduced to extract features from images: Convolutional Autoencoder (CAE), Self-Supervised Convolutional Autoencoder (SSCAE), and Smooth Convolutional Autoencoder (SCAE). A Masked Convolutional Autoencoder (MCAE) is also introduced to evaluate the capability of our convolutional autoencoder model in reconstructing images from masked inputs. Seven public datasets have been utilized to evaluate the performance of the proposed methods: the Extended Yale Dataset B, FERET, CMU Multi-PIE, Occluded ORL, Masked LFW (MLFW), AR, and RMFRD. Occluded ORL is used to analyze the performance of the proposed autoencoder derivatives on severely occluded images. MLFW is used to test the generalization of the proposed methods as an unseen dataset for the encoder part of the autoencoder variants. The recognition accuracies of 100% for FERET, 99.89% for the Extended Yale B, 99.45% for the CMU Multi-PIE, and 94.2% for unseen MLFW, and the ability to reconstruct masked ORL with 90% of masking, demonstrate that the proposed methods achieve significant improvement in accuracy for face recognition with acceptable computational cost in comparison to the state-of-the-art. To the best of our knowledge, this study is the first work where convolutional autoencoder architectures achieve such performance on occluded datasets without incorporating any occlusion-specific design.
Author Masoudi, Azin
Ahmadi, Majid
Author_xml – sequence: 1
  givenname: Azin
  orcidid: 0009-0009-5629-2560
  surname: Masoudi
  fullname: Masoudi, Azin
  email: masoudia@uwindsor.ca
  organization: Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON, Canada
– sequence: 2
  givenname: Majid
  orcidid: 0000-0001-5781-6754
  surname: Ahmadi
  fullname: Ahmadi, Majid
  organization: Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON, Canada
BookMark eNpNUdtOGzEQtRBIQOAL6IOlPif1ZX3rW7SENhICicuz5bVn6UbJOti7Qfx9TRe1nZcZHc05czTnHB33sQeErihZUErMt2Vdrx4fF4wwseCSMyrMETpjVJo5F1we_zefosucN6SULpBQZ8gtxyHOV72PAVLG15C6gxu6A2Qce3zdtS0k6Ad87_12DBDwjfOA1zv3Avk7ruNun-AX9Lkw8AMcOnjDrg_4rvQHyON2yBfopHXbDJeffYaeb1ZP9c_57f2Pdb28nXumij3qG8Ukb5gQmlQi6BYYATCaU2iElC01PkilAm88qIYIBZVX3mlinGiN4DO0nnRDdBu7T93OpXcbXWf_ADG9WJeGzm_Bai0daYSqtOdVJalpBKFUMt6a0HDNitbXSWuf4usIebCbOKa-2LecKW5kZcqnZ4hPWz7FnBO0f69SYj-isVM09iMa-xlNYX2ZWB0A_GNQVlFGDP8NQ_mKeg
CODEN IAECCG
Cites_doi 10.1111/exsy.13625
10.1016/j.imavis.2009.08.002
10.3390/s25051574
10.1109/iccvw.2019.00322
10.3390/s20020342
10.3390/electronics14091736
10.1016/j.patcog.2023.110127
10.1016/j.ijleo.2018.05.013
10.1016/s0262-8856(97)00070-x
10.11591/ijeecs.v18.i2.pp1015-1027
10.3390/s23208559
10.1155/2018/3803627
10.1109/tcsvt.2024.3419933
10.1609/aaai.v35i4.16465
10.1109/CVPR.2013.456
10.1155/2021/5591020
10.1007/s11760-021-02050-w
10.1007/s10462-019-09742-3
10.1007/978-3-031-20233-9_18
10.1016/j.neucom.2022.04.127
10.1007/s11760-019-01436-1
10.1007/s00371-024-03613-x
10.1016/j.patcog.2024.111227
10.1016/j.imavis.2021.104245
10.1109/tifs.2025.3570121
10.32604/csse.2023.027986
10.1007/978-3-319-97909-0_46
10.1007/978-3-030-01264-9_9
10.1142/s0218001422540179
10.1109/cvpr.2019.00482
10.1016/j.eswa.2019.112854
10.1016/j.ins.2021.10.059
10.1016/j.optlastec.2025.113667
10.1016/j.patcog.2023.110049
10.1109/tbiom.2024.3352164
10.1016/j.imavis.2020.104093
10.1109/tpami.2013.50
10.1007/s11042-023-18007-9
10.1109/cvprw50498.2020.00407
10.1109/tpami.2007.250598
10.1016/j.eswa.2024.126150
10.1109/tnnls.2024.3393072
10.1109/CVPR52688.2022.01553
10.3390/app122311885
10.1016/j.neucom.2024.128708
10.3390/app12063144
10.1109/iccvw.2019.00333
10.1016/j.eswa.2024.123302
10.1109/tifs.2018.2833032
10.1007/s10489-020-02100-9
10.1016/j.patcog.2022.108585
10.1016/j.neucom.2016.10.049
10.1016/j.knosys.2025.113922
10.1016/j.compeleceng.2021.107461
10.14569/ijacsa.2022.01309120
10.1109/iccvw54120.2021.00172
10.1038/s41598-024-82965-9
10.1016/j.imavis.2022.104429
10.1109/IPEC51340.2021.9421118
10.1016/j.neucom.2024.128626
10.1109/ICOSP.2014.7015203
10.1109/tpami.2021.3098962
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3632159
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals (WRLC)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 195103
ExternalDocumentID oai_doaj_org_article_886a0b5748c344619b5011623f9db382
10_1109_ACCESS_2025_3632159
11241209
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
ABAZT
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2769-1cb7263b2558045d8fe20ee9831eb566f19cd677d3bce7b057e4c7ca809a5f953
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Mon Nov 24 19:21:03 EST 2025
Fri Nov 21 23:40:29 EST 2025
Thu Nov 27 00:37:08 EST 2025
Wed Nov 26 07:20:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2769-1cb7263b2558045d8fe20ee9831eb566f19cd677d3bce7b057e4c7ca809a5f953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0009-5629-2560
0000-0001-5781-6754
OpenAccessLink https://ieeexplore.ieee.org/document/11241209
PQID 3273964936
PQPubID 4845423
PageCount 24
ParticipantIDs proquest_journals_3273964936
doaj_primary_oai_doaj_org_article_886a0b5748c344619b5011623f9db382
crossref_primary_10_1109_ACCESS_2025_3632159
ieee_primary_11241209
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref54
ref17
ref16
ref19
ref18
Ullah (ref35) 2020; 16
Chandra (ref25) 2020; 9
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref43
ref49
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Albert (ref26) 2020; 98
ref34
ref37
ref31
ref30
ref33
ref32
ref2
ref1
Hassan (ref10) 2021; 5
ref39
ref38
Fahad (ref36) 2020; 28
ref70
ref24
Kingma (ref44)
ref23
ref67
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
Goodfellow (ref8) 2016
Mandal (ref68) 2021
ref60
ref62
ref61
References_xml – ident: ref33
  doi: 10.1111/exsy.13625
– volume: 98
  start-page: 5067
  issue: 22
  year: 2020
  ident: ref26
  article-title: Real and simulated masked face recognition with a pre-trained model
  publication-title: J. Theor. Appl. Inf. Technol. (JATIT)
– ident: ref48
  doi: 10.1016/j.imavis.2009.08.002
– ident: ref2
  doi: 10.3390/s25051574
– ident: ref58
  doi: 10.1109/iccvw.2019.00322
– ident: ref12
  doi: 10.3390/s20020342
– ident: ref64
  doi: 10.3390/electronics14091736
– ident: ref9
  doi: 10.1016/j.patcog.2023.110127
– ident: ref17
  doi: 10.1016/j.ijleo.2018.05.013
– ident: ref45
  doi: 10.1016/s0262-8856(97)00070-x
– ident: ref24
  doi: 10.11591/ijeecs.v18.i2.pp1015-1027
– ident: ref6
  doi: 10.3390/s23208559
– ident: ref67
  doi: 10.1155/2018/3803627
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent. (ICLR)
  ident: ref44
  article-title: Adam: A method for stochastic optimization
– ident: ref1
  doi: 10.1109/tcsvt.2024.3419933
– ident: ref54
  doi: 10.1609/aaai.v35i4.16465
– ident: ref13
  doi: 10.1109/CVPR.2013.456
– volume: 9
  start-page: 5185
  issue: 10
  year: 2020
  ident: ref25
  article-title: A comparative analysis of face recognition models on masked faces
  publication-title: Int. J. Sci. Technol. Res. (IJSTR)
– ident: ref69
  doi: 10.1155/2021/5591020
– volume: 28
  start-page: 543
  issue: 3
  year: 2020
  ident: ref36
  article-title: Optimizing dual energy X-ray image enhancement using a novel hybrid fusion method
  publication-title: J. X-Ray Sci. Technol.
– ident: ref28
  doi: 10.1007/s11760-021-02050-w
– ident: ref46
  doi: 10.1007/s10462-019-09742-3
– ident: ref50
  doi: 10.1007/978-3-031-20233-9_18
– ident: ref41
  doi: 10.1016/j.neucom.2022.04.127
– ident: ref51
  doi: 10.1007/s11760-019-01436-1
– ident: ref20
  doi: 10.1007/s00371-024-03613-x
– ident: ref3
  doi: 10.1016/j.patcog.2024.111227
– ident: ref38
  doi: 10.1016/j.imavis.2021.104245
– ident: ref32
  doi: 10.1109/tifs.2025.3570121
– year: 2021
  ident: ref68
  article-title: Masked face recognition using ResNet-50
  publication-title: arXiv:2104.08997
– ident: ref29
  doi: 10.32604/csse.2023.027986
– volume: 16
  start-page: 1005
  issue: 5
  year: 2020
  ident: ref35
  article-title: A novel approach to enhance dual-energy X-ray images using region of interest and discrete wavelet transform
  publication-title: J. Inf. Process. Syst. (JIPS)
– ident: ref53
  doi: 10.1007/978-3-319-97909-0_46
– ident: ref42
  doi: 10.1007/978-3-030-01264-9_9
– ident: ref47
  doi: 10.1142/s0218001422540179
– ident: ref18
  doi: 10.1109/cvpr.2019.00482
– ident: ref66
  doi: 10.1016/j.eswa.2019.112854
– ident: ref63
  doi: 10.1016/j.ins.2021.10.059
– ident: ref34
  doi: 10.1016/j.optlastec.2025.113667
– ident: ref7
  doi: 10.1016/j.patcog.2023.110049
– ident: ref59
  doi: 10.1109/tbiom.2024.3352164
– ident: ref65
  doi: 10.1016/j.imavis.2020.104093
– ident: ref39
  doi: 10.1109/tpami.2013.50
– ident: ref49
  doi: 10.1007/s11042-023-18007-9
– ident: ref11
  doi: 10.1109/cvprw50498.2020.00407
– ident: ref43
  doi: 10.1109/tpami.2007.250598
– ident: ref21
  doi: 10.1016/j.eswa.2024.126150
– ident: ref31
  doi: 10.1109/tnnls.2024.3393072
– ident: ref19
  doi: 10.1109/CVPR52688.2022.01553
– ident: ref62
  doi: 10.3390/app122311885
– volume-title: Deep Learning
  year: 2016
  ident: ref8
– ident: ref5
  doi: 10.1016/j.neucom.2024.128708
– ident: ref16
  doi: 10.3390/app12063144
– ident: ref57
  doi: 10.1109/iccvw.2019.00333
– ident: ref4
  doi: 10.1016/j.eswa.2024.123302
– ident: ref55
  doi: 10.1109/tifs.2018.2833032
– ident: ref70
  doi: 10.1007/s10489-020-02100-9
– ident: ref60
  doi: 10.1016/j.patcog.2022.108585
– ident: ref40
  doi: 10.1016/j.neucom.2016.10.049
– volume: 5
  start-page: 81
  issue: 1
  year: 2021
  ident: ref10
  article-title: Deep learning convolutional neural network for face recognition: A review
  publication-title: Int. J. Sci. Bus.
– ident: ref23
  doi: 10.1016/j.knosys.2025.113922
– ident: ref15
  doi: 10.1016/j.compeleceng.2021.107461
– ident: ref27
  doi: 10.14569/ijacsa.2022.01309120
– ident: ref52
  doi: 10.1109/iccvw54120.2021.00172
– ident: ref22
  doi: 10.1038/s41598-024-82965-9
– ident: ref56
  doi: 10.1016/j.imavis.2022.104429
– ident: ref61
  doi: 10.1109/IPEC51340.2021.9421118
– ident: ref30
  doi: 10.1016/j.neucom.2024.128626
– ident: ref14
  doi: 10.1109/ICOSP.2014.7015203
– ident: ref37
  doi: 10.1109/tpami.2021.3098962
SSID ssj0000816957
Score 2.3347487
Snippet This paper presents a novel approach for improving occluded face recognition performance using a family of autoencoders (AE) architectures. The proposed...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 195080
SubjectTerms Accuracy
Artificial neural networks
Autoencoders
Coders
Convolutional autoencoder
Convolutional codes
Convolutional neural networks
Datasets
Deep learning
Deepfakes
Face recognition
Feature extraction
Image reconstruction
occluded dataset
Occlusion
Performance evaluation
Robustness
self-supervised autoencoder
smooth autoencoder
Transformers
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV25TsQwELUQooACcYrlkgtKAomd2B66ZWEFDVCARGfFRwQSZNEmy_czdgIsoqChjJXI8Ztk5o2PN4Qc-VwYbqxJXFWxJGdllZSe-QRDcWFBQVgcjMUm5M2NenyEu7lSX2FPWCcP3AF3qpQoU1PIXFmOqUsGpghrB4xX4AxX0fsi65lLpqIPVpmAQvYyQ1kKp8PRCEeECSErTrjgGOngRyiKiv19iZVffjkGm_EaWe1ZIh12b7dOFny9QVbmtAM3STmctZPksg5n0qcNvcDm9yji3dBJTS_6uictvbX2Zea8o-PSenr9iv6jOaPBDUz9U7d7nXYLBLSsHUWnh5fN7KVttsjD-PJ-dJX09RISy6SAJLNGMsENZgkKmZpTlWep96B45g3StioD64SUDo3jpUGm5nMrbalSKIsKCr5NFutJ7XcIRd7nEG8mWQU52hMKazw-xSCzUuRiQI4_odNvnSyGjulECrpDWgekdY_0gJwHeL9uDZrWsQEtrXtL678sPSBbwTjf_SE1CSd_B2T_01q6_wEbzZGWgciBi93_6HuPLIfxdHMv-2Sxnc78AVmy7-1zMz2M394HGxfYeg
  priority: 102
  providerName: Directory of Open Access Journals
Title Auto-Encoders Derivatives on Different Occluded Face Images: Comprehensive Review and New Results
URI https://ieeexplore.ieee.org/document/11241209
https://www.proquest.com/docview/3273964936
https://doaj.org/article/886a0b5748c344619b5011623f9db382
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoxQEOPItYKJUPHEmb2I7t4bZsdwUHCgeQeotieyKQShZtkh772zt23AJCHLhEiRXLjr94np4Zxl6j0k4674rQdaJQou2KFgUWxIprDxaiczAVmzBnZ_b8HD7nYPUUC4OI6fAZHsfb5MsPWz9FU9kJyQYqxnrusT1jzBysdWtQiRUkoDY5s1BVwslytaKPIB1Q1MdSS2Ju8Af3SUn6c1WVv0hx4i-bh_85s0fsQRYk-XJG_jG7g_0Tdv-39IJPWbucxm2x7mPY-m7gp9R8mfJ8D3zb89NcGmXkn7y_mAIGvmk98g8_iMQMb3mkFDv8Nh9w57MPgbd94EQX6XGYLsbhgH3drL-s3he5pELhhdFQVN4ZoaUjRcKSMBdsh6JEBCsrdCTZdRX4oI0JhB8aR8IcKm98a0to6w5q-Yzt99senzNOomHwUgkjOlAEOdTeIfUSUHmjlV6wNzdL3fycM2c0SeMooZmRaSIyTUZmwd5FOG5fjWmvUwOtc5N3UWOtbktXG2VpZEW6n6ujI0nIDoKTVizYQcTm13gZlgU7vEG3yXt0aCRJbqAVSP3iH91esntxirPF5ZDtj7sJX7G7_nL8PuyOkvpO149X66P0K14DHHfZ7g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagIAEHnq1YKOADR9ImtuMHt2XbVSvKwqFIvVmxPRFIbRZtkv5-xo5bQKiH3pIolh1_8cw3Hs8MIe9BSMedd0VoW1YI1rRFAwwKVMW1N9pE52AqNqFWK312Zr7lYPUUCwMA6fAZ7MXL5MsPaz_GrbJ95AYixnreJfdqIVg1hWtdb6nEGhKmVjm3UFWa_fligZ-BViCr97jkqN7MP_onpenPdVX-E8ZJwyyf3HJsT8njTCXpfML-GbkD3XPy6K8Egy9IMx-HdXHYxcD1TU8P8PFlyvTd03VHD3JxlIF-9f58DBDosvFAjy9QyPQfaZQVG_gxHXGnkxeBNl2gKBnxth_Ph36bfF8eni6OilxUofBMSVNU3ikmuUNTQiOdC7oFVgIYzStwyO3ayvgglQqIICiHdA6EV77RpWnq1tR8h2x16w5eEorkMHgumGKtEQi6qb0DbMVM5ZUUckY-XE21_TXlzrDJ5iiNnZCxERmbkZmRTxGO61dj4uv0AOfZ5nVktZZN6WolNPYs0PpzdXQlMd6a4LhmM7IdsfnTX4ZlRnav0LV5lfaWI3czUhguX93Q7B15cHT65cSeHK8-vyYP43Cn_ZddsjVsRnhD7vvL4We_eZt-xd9ULtsP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Auto-Encoders+Derivatives+on+Different+Occluded+Face+Images%3A+Comprehensive+Review+and+New+Results&rft.jtitle=IEEE+access&rft.au=Masoudi%2C+Azin&rft.au=Ahmadi%2C+Majid&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=195080&rft.epage=195103&rft_id=info:doi/10.1109%2FACCESS.2025.3632159&rft.externalDocID=11241209
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon