Unsupervised Dual Convolutional Autoencoder Models for Efficient Group Anomaly Detection of HST Bogies via Domain Adversarial Learning

The bogie system is known as the “legs” of high-speed train (HST), various failures will inevitably occur under large disturbances, high speeds, and heavy loads. Abnormal detection (AD) is an important means to detect the health status of its key components. Nevertheless, the cross-correlation of fa...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series Vol. 2999; no. 1; pp. 12029 - 12035
Main Authors: Chang, Yuanhong, Zhong, Shuncong, Pan, Tongyang, Xie, Jingsong
Format: Journal Article
Language:English
Published: Bristol IOP Publishing 01.04.2025
Subjects:
ISSN:1742-6588, 1742-6596
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The bogie system is known as the “legs” of high-speed train (HST), various failures will inevitably occur under large disturbances, high speeds, and heavy loads. Abnormal detection (AD) is an important means to detect the health status of its key components. Nevertheless, the cross-correlation of failures causes the confusion of health data and fault data under highly-coupled components, which leads to the issue of false detection and missing detection. Hence, this paper proposes a dual convolutional autoencoder (d-CAE) network combined with unsupervised domain-adversarial learning for group anomaly detection of bogies. Firstly, the d-CAE adopts temporal window aggregation to construct initial inputs. Afterwards, the domain-adversarial learning strategy is utilized to make the d-CAE realize multi-level encoding and reconstruction of multi-channel time-series. Finally, a parameterized dynamic AD index is designed to accurately establish the health sample guided abnormal decision boundary. The experimental results indicate that the d-CAE is competitive in the aspects of detection accuracy and robustness compared with the state-of-the-art methods.
AbstractList The bogie system is known as the “legs” of high-speed train (HST), various failures will inevitably occur under large disturbances, high speeds, and heavy loads. Abnormal detection (AD) is an important means to detect the health status of its key components. Nevertheless, the cross-correlation of failures causes the confusion of health data and fault data under highly-coupled components, which leads to the issue of false detection and missing detection. Hence, this paper proposes a dual convolutional autoencoder (d-CAE) network combined with unsupervised domain-adversarial learning for group anomaly detection of bogies. Firstly, the d-CAE adopts temporal window aggregation to construct initial inputs. Afterwards, the domain-adversarial learning strategy is utilized to make the d-CAE realize multi-level encoding and reconstruction of multi-channel time-series. Finally, a parameterized dynamic AD index is designed to accurately establish the health sample guided abnormal decision boundary. The experimental results indicate that the d-CAE is competitive in the aspects of detection accuracy and robustness compared with the state-of-the-art methods.
Author Zhong, Shuncong
Chang, Yuanhong
Pan, Tongyang
Xie, Jingsong
Author_xml – sequence: 1
  givenname: Yuanhong
  surname: Chang
  fullname: Chang, Yuanhong
  organization: Fujian Provincial Key Laboratory of Terahertz Functional Devices and Intelligent Sensing , 350108 Fuzhou, Fujian, China
– sequence: 2
  givenname: Shuncong
  surname: Zhong
  fullname: Zhong, Shuncong
  organization: Fujian Provincial Key Laboratory of Terahertz Functional Devices and Intelligent Sensing , 350108 Fuzhou, Fujian, China
– sequence: 3
  givenname: Tongyang
  surname: Pan
  fullname: Pan, Tongyang
  organization: Central South University School of Traffic & Transportation Engineering, 410083 Changsha, Hunan, China
– sequence: 4
  givenname: Jingsong
  surname: Xie
  fullname: Xie, Jingsong
  organization: Central South University School of Traffic & Transportation Engineering, 410083 Changsha, Hunan, China
BookMark eNqFkFtLBCEYhiUKOv6GhO6CbcfDHLzcdrcTGwXVtczoZxiTTjqz0B_od-ewUQRBXqgfvs8LPvto23kHCB2T7IxkVTUlJaeTIhfFlAohpmSaEZpRsYX2vl-2v-9VtYv2Y3zJMpZWuYc-nlwcOghrG0HjxVC3eO7d2rdDb71L02zoPTjlNQR8m_Y2YuMDXhpjlQXX48vghw7PnH-t23e8gB7UiGJv8NXDIz73zxYiXtsaL1LEOjzTawixDja1r6AOzrrnQ7Rj6jbC0dd5gJ4ulo_zq8nq7vJ6PltNFC0LMSF5U7EcWKFyLZQhOS8LJnjTFIZoaERTUQ6qTKNqGsIrXVSKG1GXVJcZaMoO0Mmmtwv-bYDYyxc_hPTPKBkRnLKcU55S5Salgo8xgJFdsK91eJckk6N0OeqUo1o5SpdEbqQnkm1I67uf6v-p0z-om_v5w--g7LRhnwGplVE
Cites_doi 10.1016/j.patcog.2016.03.028
10.1016/j.iot.2022.100568
10.1016/j.isatra.2022.07.014
10.1016/j.jsv.2018.12.033
10.1109/ICDM.2008.17
10.1016/j.mechmachtheory.2020.104215
10.1109/ICDMW.2019.00152
10.1016/j.measurement.2022.112171
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1088/1742-6596/2999/1/012029
DatabaseName IOP Publishing Free Content
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Journals Open Access
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_2999_1_012029
JPCS_2999_1_012029
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PHGZT
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
W28
XSB
~02
AAYXX
AEINN
AFFHD
CITATION
OVT
PHGZM
PQGLB
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2769-15b835e36c5d9cf15476394bb6f1deb9b824ec7b6fcbb148d68c4f9a72d70ed23
IEDL.DBID O3W
ISSN 1742-6588
IngestDate Wed Aug 13 11:14:38 EDT 2025
Sat Nov 29 07:56:44 EST 2025
Tue Apr 29 23:13:48 EDT 2025
Tue Apr 29 23:13:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2769-15b835e36c5d9cf15476394bb6f1deb9b824ec7b6fcbb148d68c4f9a72d70ed23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://iopscience.iop.org/article/10.1088/1742-6596/2999/1/012029
PQID 3194235424
PQPubID 4998668
PageCount 7
ParticipantIDs iop_journals_10_1088_1742_6596_2999_1_012029
proquest_journals_3194235424
crossref_primary_10_1088_1742_6596_2999_1_012029
PublicationCentury 2000
PublicationDate 20250401
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 20250401
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2025
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Huang (JPCS_2999_1_012029bib1) 2019; 444
Akcay (JPCS_2999_1_012029bib5) 2018
Yan (JPCS_2999_1_012029bib8) 2023; 133
Liu (JPCS_2999_1_012029bib7) 2008
Chatterjee (JPCS_2999_1_012029bib3) 2022; 19
Lu (JPCS_2999_1_012029bib2) 2021; 157
Erfani (JPCS_2999_1_012029bib6) 2016; 58
Zhang (JPCS_2999_1_012029bib9) 2022; 205
Luer (JPCS_2999_1_012029bib4) 2019
References_xml – volume: 58
  start-page: 121
  year: 2016
  ident: JPCS_2999_1_012029bib6
  article-title: High dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning[J]
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2016.03.028
– volume: 19
  year: 2022
  ident: JPCS_2999_1_012029bib3
  article-title: IoT anomaly detection methods and applications: A survey[J]
  publication-title: Internet of Things
  doi: 10.1016/j.iot.2022.100568
– volume: 133
  start-page: 53
  year: 2023
  ident: JPCS_2999_1_012029bib8
  article-title: Memory-augmented skip-connected autoencoder for unsupervised anomaly detection of rocket engines with multi-source fusion[J]
  publication-title: ISA Transactions
  doi: 10.1016/j.isatra.2022.07.014
– volume: 444
  start-page: 216
  year: 2019
  ident: JPCS_2999_1_012029bib1
  article-title: A modified scale-space guiding variational mode decomposition for high-speed railway bearing fault diagnosis[J]
  publication-title: Journal of Sound and Vibration
  doi: 10.1016/j.jsv.2018.12.033
– year: 2008
  ident: JPCS_2999_1_012029bib7
  article-title: Isolation forest[C]
  doi: 10.1109/ICDM.2008.17
– volume: 157
  year: 2021
  ident: JPCS_2999_1_012029bib2
  article-title: Coupling model and vibration simulations of railway vehicles and running gear bearings with multitype defects[J]
  publication-title: Mechanism and Machine Theory
  doi: 10.1016/j.mechmachtheory.2020.104215
– year: 2019
  ident: JPCS_2999_1_012029bib4
  article-title: Anomaly detection in time series using generative adversarial networks[C]
  doi: 10.1109/ICDMW.2019.00152
– year: 2018
  ident: JPCS_2999_1_012029bib5
  article-title: GANomaly: Semi-supervised anomaly detection via adversarial training[C]
– volume: 205
  year: 2022
  ident: JPCS_2999_1_012029bib9
  article-title: Retentive multimodal scale-variable anomaly detection framework with limited data groups for liquid rocket engine[J]
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.112171
SSID ssj0033337
Score 2.391184
Snippet The bogie system is known as the “legs” of high-speed train (HST), various failures will inevitably occur under large disturbances, high speeds, and heavy...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12029
SubjectTerms Anomalies
Cross correlation
High speed rail
Learning
Undercarriages
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBVN2kIv_S7dNgmC9lizkS3L0qmkuwmhh7CQBEIvwvpwWUhsd7W7kD-Q390ZrcwSCs0hPtpjY3ijNyNpNI-Qr1w4VjjGM-ZhrsqtVzCkGpYZ58tGVqp20kSxiersTF5dqVlacAuprHLgxEjUrrO4Rj4GV4HIX_Kcf-__ZKgahburSUJjhzzFLgko3TArfw1MXMBVbQ5E5hlEWjnUd8GkL91TYgx8rMZsjIdIY565jU47867_h6Jj3Dl59dg_fk1epoyTHm1c5A154tu35Hms_LThHbm7bMOqR8YI3tHpCkwnXbtOHokvrpYddrt0fkFROe06UEh06XHsPQEhi8blK3rUdjf19S2d-mWs7mpp19DT8wv6A9WcA13PazoFk3lLowh0qNH1aerv-vs9uTw5vpicZkmcIbN5JVTGSgPJmy-ELZ2yDWRiwFSKGyMa5rxRRubc2wrPEhkDcy4npOWNqqvcVYfe5cUHstt2rf9IqIjPJC9tU3JTOyUULwsDH7O1cDUbkcMBFN1venDouHcupUYcNeKoEUfN9AbHEfkG4Ok0HsPD5l_umf-cTc7vW-jeNSOyNwC9Nd2i_On_jz-TFzlqB8eqnz2yu1ys_D55ZtfLeVgcRMf9C0Hj8bA
  priority: 102
  providerName: ProQuest
Title Unsupervised Dual Convolutional Autoencoder Models for Efficient Group Anomaly Detection of HST Bogies via Domain Adversarial Learning
URI https://iopscience.iop.org/article/10.1088/1742-6596/2999/1/012029
https://www.proquest.com/docview/3194235424
Volume 2999
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Journals Open Access
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: O3W
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: P5Z
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: BENPR
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: PIMPY
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-xDSRexudEx5gswSOhc2I79uPWdhpIlIhtYvBixR9BlUZSNW0l_gH-bs5OKlQhhJDIQxQlZ8c6n393Tu4D4BUTjmaOsoR63Ksy6xUuqYomxnleyVyVTppYbCKfTuXNjdqKhWnmPfS_wcsuUXDHwt4hTg7Rhk4TwZUYIpSqIR2G-M9U7cBeJlGbo0x_yD5t0DjDI--CIkMjKTc-Xn_uaEtD7eAofoPpqHvOH_yPUT-E_d7yJKddi0dwx9eP4V70ALXtE_hxXbereUCO1jsyXiHpqKnXvWSGhqtlE7JeOr8goYLabUvQ4CWTmIMCVReJn7HIad18K2-_k7FfRi-vmjQVubi8ImehqnNL1rOSjJFkVpNYDLotwxIgfZ7Xr0_h-nxyNbpI-iINiU1zoRLKDRpxPhOWO2UrtMgQsRQzRlTUeaOMTJm3eYgpMgb3Xk5IyypV5qnLT7xLswPYrZvaPwMi4jPJuK04M6VTQjGeGezMlsKVdAAnm4nR8y4Xh47_0KXUgb06sFcH9mqqO_YO4DVOiO7XZft38pdb5O-K0eU2hZ67agBHG3n4RYpQhpYpZyk7_Ld3Pof7aagpHL2BjmB3uVj5F3DXrpezdnEMe2eTafHxOAo1ngv-Be8Vb98Xn38CH5zzVQ
linkProvider IOP Publishing
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAQX3ohAgZWAG1ZqZ732HhAqSauEtlGkplI5Ld6Hq0itbbJJUP8AP4ffyOzaVlQhwakHfPSOfVh_81rPzAfwjjId9nVIg9BgrkqV4ahSeRhIbeI8TXimU-nJJpLJJD0749Mt-NX2wriyytYmekOtS-XOyHsIFfT8MY3op-p74Fij3N_VlkKjhsWhufqBKZv9OB7i930fRQf7s8EoaFgFAhUljAdhLDHqMH2mYs1VjiEEqhinUrI81EZymUbUqMQ1wUiJyYJmqaI5z5JIJ7tGu0EHaPK3qQN7B7an4-Pp19b29_FK6hbMKEDfnrYVZZhmNvc466EH4L2w59pWfWS78Ye35mX1h1Pwnu7gwf-2Rw_hfhNTk71aCR7Blikewx1f26rsE_h5WthV5WyiNZoMVyg6KIt1o3PuwdWydPM8tVkQxw13YQmG8mTfT9dAp0z8AR3ZK8rL7OKKDM3S168VpMzJ6GRGPju-akvW84wMUWReEE9zbTOn3KSZYHv-FE5vZBOeQacoC_McCPNrKY1VHlOZac44jfsSX6YyprOwC7stCERVTxkRvjogTYXDjXC4EQ43IhQ1brrwAcEiGotj_y3-9pr4l-ng5LqEqHTehZ0WWBvRDape_H35DdwdzY6PxNF4cvgS7kWOKdnXOO1AZ7lYmVdwW62Xc7t43agNgW83jcLfI6lRDQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3ra9swED_62Ma-tN2LZetawfZxnitblqWPbdLQPcgCbVm_CevhEejsECeB_QP7u3eSnZZQyhjUnwy-k8Xd6aeTfQ-AD4xbmlrKIurwrMqMk7ikShpp67JS5LKwQodmE_loJK6u5HgDhje5MPW0g_5PeNsWCm5F2AXEiRh96CTimeQxQqmMaezzPxMZT225Cdu-XIm37u_pjxUip3jlbWKkZxRiFed1_2Bru9QmzuQOVIf9Z7j7UDPfg53OAyXHLdcz2HDVc3gcIkFN8wL-XFbNYuoRpHGWDBZI2q-rZWehnnExr331S-tmxHdSu24IOr7kNNSiwC2MhM9Z5LiqfxXXv8nAzUO0V0XqkpydX5AT3925IctJQQZIMqlIaArdFH4pkK7e68-XcDk8veifRV2zhsgkOZcRzTQ6cy7lJrPSlOiZIXJJpjUvqXVaapEwZ3KfW6Q1nsEsF4aVssgTmx85m6SvYKuqK_caCA_PBMtMmTFdWMkly1KNg5mC24L24GilHDVta3Ko8C9dCOVFrLyIlRexoqoVcQ8-olJUtz6bf5O_XyP_Mu6fr1Mo1FkP9lc2cUuKkIYeasYS9ub_3nkIT8aDofr2efT1LTxNfJvhECC0D1vz2cK9g0dmOZ80s4Ng238BtkX0cQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Dual+Convolutional+Autoencoder+Models+for+Efficient+Group+Anomaly+Detection+of+HST+Bogies+via+Domain+Adversarial+Learning&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Chang%2C+Yuanhong&rft.au=Zhong%2C+Shuncong&rft.au=Pan%2C+Tongyang&rft.au=Xie%2C+Jingsong&rft.date=2025-04-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2999&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F2999%2F1%2F012029&rft.externalDocID=JPCS_2999_1_012029
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon