Structural Similarity-Inspired Unfolding for Lightweight Image Super-Resolution
Major efforts in data-driven image super-resolution (SR) primarily focus on expanding the receptive field of the model to better capture contextual information. However, these methods are typically implemented by stacking deeper networks or leveraging transformer-based attention mechanisms, which co...
Uloženo v:
| Vydáno v: | IEEE transactions on image processing Ročník 34; s. 3861 - 3872 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.01.2025
|
| Témata: | |
| ISSN: | 1057-7149, 1941-0042, 1941-0042 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Major efforts in data-driven image super-resolution (SR) primarily focus on expanding the receptive field of the model to better capture contextual information. However, these methods are typically implemented by stacking deeper networks or leveraging transformer-based attention mechanisms, which consequently increases model complexity. In contrast, model-driven methods based on the unfolding paradigm show promise in improving performance while effectively maintaining model compactness through sophisticated module design. Based on these insights, we propose a Structural Similarity-Inspired Unfolding (SSIU) method for efficient image SR. This method is designed through unfolding an SR optimization function constrained by structural similarity, aiming to combine the strengths of both data-driven and model-driven approaches. Our model operates progressively following the unfolding paradigm. Each iteration consists of multiple Mixed-Scale Gating Modules (MSGM) and an Efficient Sparse Attention Module (ESAM). The former implements comprehensive constraints on features, including a structural similarity constraint, while the latter aims to achieve sparse activation. In addition, we design a Mixture-of-Experts-based Feature Selector (MoE-FS) that fully utilizes multi-level feature information by combining features from different steps. Extensive experiments validate the efficacy and efficiency of our unfolding-inspired network. Our model outperforms current state-of-the-art models, boasting lower parameter counts and reduced memory consumption. Our code will be available at: https://github.com/eezkni/SSIU |
|---|---|
| AbstractList | Major efforts in data-driven image super-resolution (SR) primarily focus on expanding the receptive field of the model to better capture contextual information. However, these methods are typically implemented by stacking deeper networks or leveraging transformer-based attention mechanisms, which consequently increases model complexity. In contrast, model-driven methods based on the unfolding paradigm show promise in improving performance while effectively maintaining model compactness through sophisticated module design. Based on these insights, we propose a Structural Similarity-Inspired Unfolding (SSIU) method for efficient image SR. This method is designed through unfolding an SR optimization function constrained by structural similarity, aiming to combine the strengths of both data-driven and model-driven approaches. Our model operates progressively following the unfolding paradigm. Each iteration consists of multiple Mixed-Scale Gating Modules (MSGM) and an Efficient Sparse Attention Module (ESAM). The former implements comprehensive constraints on features, including a structural similarity constraint, while the latter aims to achieve sparse activation. In addition, we design a Mixture-of-Experts-based Feature Selector (MoE-FS) that fully utilizes multi-level feature information by combining features from different steps. Extensive experiments validate the efficacy and efficiency of our unfolding-inspired network. Our model outperforms current state-of-the-art models, boasting lower parameter counts and reduced memory consumption. Our code will be available at: https://github.com/eezkni/SSIU.Major efforts in data-driven image super-resolution (SR) primarily focus on expanding the receptive field of the model to better capture contextual information. However, these methods are typically implemented by stacking deeper networks or leveraging transformer-based attention mechanisms, which consequently increases model complexity. In contrast, model-driven methods based on the unfolding paradigm show promise in improving performance while effectively maintaining model compactness through sophisticated module design. Based on these insights, we propose a Structural Similarity-Inspired Unfolding (SSIU) method for efficient image SR. This method is designed through unfolding an SR optimization function constrained by structural similarity, aiming to combine the strengths of both data-driven and model-driven approaches. Our model operates progressively following the unfolding paradigm. Each iteration consists of multiple Mixed-Scale Gating Modules (MSGM) and an Efficient Sparse Attention Module (ESAM). The former implements comprehensive constraints on features, including a structural similarity constraint, while the latter aims to achieve sparse activation. In addition, we design a Mixture-of-Experts-based Feature Selector (MoE-FS) that fully utilizes multi-level feature information by combining features from different steps. Extensive experiments validate the efficacy and efficiency of our unfolding-inspired network. Our model outperforms current state-of-the-art models, boasting lower parameter counts and reduced memory consumption. Our code will be available at: https://github.com/eezkni/SSIU. Major efforts in data-driven image super-resolution (SR) primarily focus on expanding the receptive field of the model to better capture contextual information. However, these methods are typically implemented by stacking deeper networks or leveraging transformer-based attention mechanisms, which consequently increases model complexity. In contrast, model-driven methods based on the unfolding paradigm show promise in improving performance while effectively maintaining model compactness through sophisticated module design. Based on these insights, we propose a Structural Similarity-Inspired Unfolding (SSIU) method for efficient image SR. This method is designed through unfolding an SR optimization function constrained by structural similarity, aiming to combine the strengths of both data-driven and model-driven approaches. Our model operates progressively following the unfolding paradigm. Each iteration consists of multiple Mixed-Scale Gating Modules (MSGM) and an Efficient Sparse Attention Module (ESAM). The former implements comprehensive constraints on features, including a structural similarity constraint, while the latter aims to achieve sparse activation. In addition, we design a Mixture-of-Experts-based Feature Selector (MoE-FS) that fully utilizes multi-level feature information by combining features from different steps. Extensive experiments validate the efficacy and efficiency of our unfolding-inspired network. Our model outperforms current state-of-the-art models, boasting lower parameter counts and reduced memory consumption. Our code will be available at: https://github.com/eezkni/SSIU Major efforts in data-driven image super-resolution (SR) primarily focus on expanding the receptive field of the model to better capture contextual information. However, these methods are typically implemented by stacking deeper networks or leveraging transformer-based attention mechanisms, which consequently increases model complexity. In contrast, model-driven methods based on the unfolding paradigm show promise in improving performance while effectively maintaining model compactness through sophisticated module design. Based on these insights, we propose a Structural Similarity-Inspired Unfolding (SSIU) method for efficient image SR. This method is designed through unfolding an SR optimization function constrained by structural similarity, aiming to combine the strengths of both data-driven and model-driven approaches. Our model operates progressively following the unfolding paradigm. Each iteration consists of multiple Mixed-Scale Gating Modules (MSGM) and an Efficient Sparse Attention Module (ESAM). The former implements comprehensive constraints on features, including a structural similarity constraint, while the latter aims to achieve sparse activation. In addition, we design a Mixture-of-Experts-based Feature Selector (MoE-FS) that fully utilizes multi-level feature information by combining features from different steps. Extensive experiments validate the efficacy and efficiency of our unfolding-inspired network. Our model outperforms current state-of-the-art models, boasting lower parameter counts and reduced memory consumption. Our code will be available at: https://github.com/eezkni/SSIU. |
| Author | Wang, Shiqi Zhang, Yang Wang, Hanli Kwong, Sam Ni, Zhangkai Yang, Wenhan |
| Author_xml | – sequence: 1 givenname: Zhangkai orcidid: 0000-0003-3682-6288 surname: Ni fullname: Ni, Zhangkai email: zkni@tongji.edu.cn organization: School of Computer Science and Technology and the Key Laboratory of Embedded System and Service Computing (Ministry of Education), Tongji University, Shanghai, China – sequence: 2 givenname: Yang surname: Zhang fullname: Zhang, Yang email: zhangy_ce@tongji.edu.cn organization: School of Computer Science and Technology and the Key Laboratory of Embedded System and Service Computing (Ministry of Education), Tongji University, Shanghai, China – sequence: 3 givenname: Wenhan orcidid: 0000-0002-1692-0069 surname: Yang fullname: Yang, Wenhan email: yangwh@pcl.ac.cn organization: Pengcheng Laboratory, Shenzhen, Guangdong, China – sequence: 4 givenname: Hanli orcidid: 0000-0002-9999-4871 surname: Wang fullname: Wang, Hanli email: hanliwang@tongji.edu.cn organization: School of Computer Science and Technology and the Key Laboratory of Embedded System and Service Computing (Ministry of Education), Tongji University, Shanghai, China – sequence: 5 givenname: Shiqi orcidid: 0000-0002-3583-959X surname: Wang fullname: Wang, Shiqi email: shiqwang@cityu.edu.hk organization: Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong – sequence: 6 givenname: Sam orcidid: 0000-0001-7484-7261 surname: Kwong fullname: Kwong, Sam email: samkwong@ln.edu.hk organization: School of Data Science, Lingnan University, Tuen Mun, Hong Kong |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40531647$$D View this record in MEDLINE/PubMed |
| BookMark | eNpFkE1Lw0AQhhep2Fq9exDJ0Uvqzn4k2aMUPwoFxdZz2Gxm60o-6m6C9N-b0qqXmYH3eefwnJNR0zZIyBXQGQBVd-vF64xRJmdcplkq-QmZgBIQUyrYaLipTOMUhBqT8xA-KQUhITkjY0Elh0SkE_Ky6nxvut7rKlq52lXau24XL5qwdR7L6L2xbVW6ZhPZ1kdLt_novnE_o0WtNxit-i36-A1DW_Wda5sLcmp1FfDyuKdk_fiwnj_Hy5enxfx-GRuWyi5WFGjGEoGlLiyAEMparorMmIwXqSpNohXLMFUWMaGlMoBFaWiWWWmUtnxKbg9vt7796jF0ee2CwarSDbZ9yDljjMuEcRjQmyPaFzWW-da7Wvtd_utgAOgBML4NwaP9Q4Dme835oDnfa86PmofK9aHiEPEfB8oVDPEPyEx5ZA |
| CODEN | IIPRE4 |
| Cites_doi | 10.1109/iccv.2001.937655 10.1109/TPAMI.2013.102 10.1007/978-3-030-01234-2_18 10.1109/ICCVW54120.2021.00210 10.1109/JBHI.2024.3454068 10.1109/TIP.2024.3368960 10.1109/TPAMI.2021.3088914 10.1109/LSP.2023.3264558 10.1109/CVPR52729.2023.02143 10.1145/3474085.3475291 10.1007/978-3-030-01249-6_16 10.1109/CVPR.2016.182 10.1109/TIP.2023.3279977 10.1109/WACV56688.2023.00493 10.1109/CVPR42600.2020.00583 10.1109/CVPR.2019.01132 10.1109/TIP.2023.3348293 10.1007/978-3-642-27413-8_47 10.24963/ijcai.2022/128 10.1109/ICCV51070.2023.01150 10.1109/ICCV51070.2023.01213 10.1109/CVPR.2016.207 10.1007/s11263-019-01285-y 10.1007/978-3-030-58610-2_12 10.1109/CVPR.2015.7299156 10.1109/TPAMI.2015.2439281 10.1109/TBC.2024.3374122 10.1109/CVPR46437.2021.00908 10.1109/CVPR.2017.298 10.1109/TIP.2022.3154614 10.1109/CVPR52733.2024.02437 10.1007/s11263-022-01699-1 10.1109/TCSVT.2024.3467259 10.1109/ICCV51070.2023.01174 10.1007/978-3-031-73661-2_27 10.1109/tcsvt.2025.3549351 10.5244/C.26.135 10.1109/CVPRW.2017.151 10.1016/j.patcog.2023.110095 10.1109/CVPRW.2017.150 10.1007/s11263-023-01813-x 10.1007/s11263-019-01253-6 10.1109/CVPR46437.2021.00488 10.1109/CVPR52733.2024.00276 10.1109/TIP.2012.2235847 10.1109/CVPRW56347.2022.00061 10.1109/CVPR46437.2021.00776 10.1109/TIP.2021.3050856 10.1109/CVPR52729.2023.02142 10.1109/TIP.2011.2108306 10.1002/cpa.20042 10.1145/3343031.3351084 10.1007/s11042-016-4020-z 10.1109/CVPR.2019.00177 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
| DOI | 10.1109/TIP.2025.3578753 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1941-0042 |
| EndPage | 3872 |
| ExternalDocumentID | 40531647 10_1109_TIP_2025_3578753 11039153 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62201387; 62371343 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities funderid: 10.13039/501100012226 – fundername: Interdisciplinary Frontier Research Project of Pengcheng Laboratory (PCL) grantid: 2025QYB013 funderid: 10.13039/501100001809 |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION AAYOK NPM RIG 7X8 |
| ID | FETCH-LOGICAL-c275t-90108264edabf11449ff39b8cc83b79dc6a928e79fee60d9c1ebdc088f5c9af3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001516237300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1057-7149 1941-0042 |
| IngestDate | Thu Oct 02 22:33:44 EDT 2025 Thu Jun 26 01:52:28 EDT 2025 Sat Nov 29 07:51:43 EST 2025 Wed Aug 27 01:36:10 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c275t-90108264edabf11449ff39b8cc83b79dc6a928e79fee60d9c1ebdc088f5c9af3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-1692-0069 0000-0002-3583-959X 0000-0001-7484-7261 0000-0002-9999-4871 0000-0003-3682-6288 |
| PMID | 40531647 |
| PQID | 3222356231 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | pubmed_primary_40531647 crossref_primary_10_1109_TIP_2025_3578753 proquest_miscellaneous_3222356231 ieee_primary_11039153 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on image processing |
| PublicationTitleAbbrev | TIP |
| PublicationTitleAlternate | IEEE Trans Image Process |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref56 ref15 ref59 ref14 Li (ref35); 33 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 Sun (ref38) ref45 ref48 ref47 Loshchilov (ref58) ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 Kingma (ref57) ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Dosovitskiy (ref24) |
| References_xml | – ident: ref54 doi: 10.1109/iccv.2001.937655 – ident: ref46 doi: 10.1109/TPAMI.2013.102 – ident: ref4 doi: 10.1007/978-3-030-01234-2_18 – ident: ref11 doi: 10.1109/ICCVW54120.2021.00210 – ident: ref9 doi: 10.1109/JBHI.2024.3454068 – start-page: 17314 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref38 article-title: ShuffleMixer: An efficient ConvNet for image super-resolution – ident: ref8 doi: 10.1109/TIP.2024.3368960 – ident: ref17 doi: 10.1109/TPAMI.2021.3088914 – ident: ref15 doi: 10.1109/LSP.2023.3264558 – ident: ref43 doi: 10.1109/CVPR52729.2023.02143 – ident: ref36 doi: 10.1145/3474085.3475291 – ident: ref33 doi: 10.1007/978-3-030-01249-6_16 – ident: ref2 doi: 10.1109/CVPR.2016.182 – ident: ref12 doi: 10.1109/TIP.2023.3279977 – ident: ref26 doi: 10.1109/WACV56688.2023.00493 – ident: ref25 doi: 10.1109/CVPR42600.2020.00583 – ident: ref5 doi: 10.1109/CVPR.2019.01132 – ident: ref50 doi: 10.1109/TIP.2023.3348293 – ident: ref53 doi: 10.1007/978-3-642-27413-8_47 – ident: ref39 doi: 10.24963/ijcai.2022/128 – ident: ref41 doi: 10.1109/ICCV51070.2023.01150 – ident: ref42 doi: 10.1109/ICCV51070.2023.01213 – ident: ref13 doi: 10.1109/CVPR.2016.207 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref58 article-title: SGDR: Stochastic gradient descent with warm restarts – ident: ref48 doi: 10.1007/s11263-019-01285-y – ident: ref6 doi: 10.1007/978-3-030-58610-2_12 – ident: ref55 doi: 10.1109/CVPR.2015.7299156 – ident: ref1 doi: 10.1109/TPAMI.2015.2439281 – ident: ref30 doi: 10.1109/TBC.2024.3374122 – ident: ref59 doi: 10.1109/CVPR46437.2021.00908 – volume: 33 start-page: 20343 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref35 article-title: LAPAR: Linearly-assembled pixel-adaptive regression network for single image super-aesolution and beyond – ident: ref22 doi: 10.1109/CVPR.2017.298 – ident: ref3 doi: 10.1109/TIP.2022.3154614 – ident: ref31 doi: 10.1109/CVPR52733.2024.02437 – ident: ref19 doi: 10.1007/s11263-022-01699-1 – ident: ref28 doi: 10.1109/TCSVT.2024.3467259 – ident: ref40 doi: 10.1109/ICCV51070.2023.01174 – ident: ref44 doi: 10.1007/978-3-031-73661-2_27 – ident: ref29 doi: 10.1109/tcsvt.2025.3549351 – ident: ref52 doi: 10.5244/C.26.135 – ident: ref32 doi: 10.1109/CVPRW.2017.151 – ident: ref23 doi: 10.1016/j.patcog.2023.110095 – ident: ref51 doi: 10.1109/CVPRW.2017.150 – ident: ref49 doi: 10.1007/s11263-023-01813-x – ident: ref14 doi: 10.1007/s11263-019-01253-6 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref24 article-title: An image is worth 16×16 words: Transformers for image recognition at scale – ident: ref37 doi: 10.1109/CVPR46437.2021.00488 – ident: ref27 doi: 10.1109/CVPR52733.2024.00276 – ident: ref45 doi: 10.1109/TIP.2012.2235847 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref57 article-title: Adam: A method for stochastic optimization – ident: ref10 doi: 10.1109/CVPRW56347.2022.00061 – ident: ref16 doi: 10.1109/CVPR46437.2021.00776 – ident: ref7 doi: 10.1109/TIP.2021.3050856 – ident: ref20 doi: 10.1109/CVPR52729.2023.02142 – ident: ref21 doi: 10.1109/TIP.2011.2108306 – ident: ref47 doi: 10.1002/cpa.20042 – ident: ref34 doi: 10.1145/3343031.3351084 – ident: ref56 doi: 10.1007/s11042-016-4020-z – ident: ref18 doi: 10.1109/CVPR.2019.00177 |
| SSID | ssj0014516 |
| Score | 2.4734762 |
| Snippet | Major efforts in data-driven image super-resolution (SR) primarily focus on expanding the receptive field of the model to better capture contextual... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 3861 |
| SubjectTerms | Complexity theory Computational modeling Electronic mail Encoding Estimation Feature extraction Image reconstruction Image super-resolution light-weight Optimization paradigm unfolding sparse attention Superresolution Transformers |
| Title | Structural Similarity-Inspired Unfolding for Lightweight Image Super-Resolution |
| URI | https://ieeexplore.ieee.org/document/11039153 https://www.ncbi.nlm.nih.gov/pubmed/40531647 https://www.proquest.com/docview/3222356231 |
| Volume | 34 |
| WOSCitedRecordID | wos001516237300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1941-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014516 issn: 1057-7149 databaseCode: RIE dateStart: 19920101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5UROrBaq1aHyWCFw-xeW_2KGKxILXQCr2F7GYWemgq1urfd2aTVi8ehBxCyGbDzOzuN_PtzgDckE-BgScDl2uJuJFMjKtypHGVCiUMhpGOjS02IYbDdDqVo_qwuj0Lg4h28xne8a3l8ouFXnGorOf7Np95uA3bQiTVYa0NZcAVZy21GQtXEO5fc5Ke7E0GI_IEg_iOU7sQPm_AXsTGl3BRlV_Lka2v8jfUtEtOv_nPnz2EgxpbOveVMRzBFpYtaNY406lH8bIF-7-SEB7Dy9imkOX0G854Np-Rq0vI3B2UzMFTu1cyQctQOYRvnWd25r9sPNUZzGkycsarN3x3mQaojLgNk_7j5OHJrcssuDoQ8YfdoEFORoRFrgy5R5E0JpQq1ToNlZCFTnIZpCikQUy8QmofVaFpdjKxlrkJT2CnXJR4Bk6hQ3pcxCrSBV2xSrzI15HRKlCBr_0O3K6Fnb1VyTQy64R4MiMdZayjrNZRB9os05_3anF24HqtnoxGAtMbeYmL1TJjzihkOEf9nFZ627Req_v8j69eQIM7r2Irl7BDgscr2NWfH7Ple5fMbZp2rbl9AyQ90IY |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xieXAvpQ1SFw4pM3iLD4iRNWKUpBaJG5R7IylHpoiSuH3mXFS4MIBKYcoihPLM7bf87NnAK6IU2DgycDlXCKukLFxVY7Ur9JEJQZDoSNjk00k_X768iKf6sPq9iwMItrNZ9jkW6vlFxM946Wylu_beObhIixHQgRedVzrWzTgnLNW3IwSNyHkP1clPdkadp-ICwZRk4O7EEJfh1XB7hdzWpVfE5LNsPI32LSTTnvrn9Xdhs0aXTo3lTvswAKWu7BVI02n7sfTXdj4FYZwDx4HNogsB-BwBqPxiMguYXO3W7IKT-WeyQmtRuUQwnV6TOc_7Yqq0x3TcOQMZq_45rIQULnxPgzbd8PbjlsnWnB1kETvdosG0QyBRa4MESQhjQmlSrVOQ5XIQse5DFJMpEGMvUJqH1WhaXwykZa5CQ9gqZyUeAROoUN6XERK6IKuSMWe8LUwWgUq8LXfgOt5Y2evVTiNzNIQT2Zko4xtlNU2asA-t-nPe3VzNuBybp6M-gILHHmJk9k0Y9UoZEBH_zms7PZdem7u4z--egFrneFDL-t1-_cnsM4VqVZaTmGJjIBnsKI_3kfTt3PrdF86v9Ll |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+Similarity-Inspired+Unfolding+for+Lightweight+Image+Super-Resolution&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Ni%2C+Zhangkai&rft.au=Zhang%2C+Yang&rft.au=Yang%2C+Wenhan&rft.au=Wang%2C+Hanli&rft.date=2025-01-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=34&rft.spage=3861&rft.epage=3872&rft_id=info:doi/10.1109%2FTIP.2025.3578753&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2025_3578753 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |