Structural Similarity-Inspired Unfolding for Lightweight Image Super-Resolution

Major efforts in data-driven image super-resolution (SR) primarily focus on expanding the receptive field of the model to better capture contextual information. However, these methods are typically implemented by stacking deeper networks or leveraging transformer-based attention mechanisms, which co...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing Vol. 34; pp. 3861 - 3872
Main Authors: Ni, Zhangkai, Zhang, Yang, Yang, Wenhan, Wang, Hanli, Wang, Shiqi, Kwong, Sam
Format: Journal Article
Language:English
Published: United States IEEE 01.01.2025
Subjects:
ISSN:1057-7149, 1941-0042, 1941-0042
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Major efforts in data-driven image super-resolution (SR) primarily focus on expanding the receptive field of the model to better capture contextual information. However, these methods are typically implemented by stacking deeper networks or leveraging transformer-based attention mechanisms, which consequently increases model complexity. In contrast, model-driven methods based on the unfolding paradigm show promise in improving performance while effectively maintaining model compactness through sophisticated module design. Based on these insights, we propose a Structural Similarity-Inspired Unfolding (SSIU) method for efficient image SR. This method is designed through unfolding an SR optimization function constrained by structural similarity, aiming to combine the strengths of both data-driven and model-driven approaches. Our model operates progressively following the unfolding paradigm. Each iteration consists of multiple Mixed-Scale Gating Modules (MSGM) and an Efficient Sparse Attention Module (ESAM). The former implements comprehensive constraints on features, including a structural similarity constraint, while the latter aims to achieve sparse activation. In addition, we design a Mixture-of-Experts-based Feature Selector (MoE-FS) that fully utilizes multi-level feature information by combining features from different steps. Extensive experiments validate the efficacy and efficiency of our unfolding-inspired network. Our model outperforms current state-of-the-art models, boasting lower parameter counts and reduced memory consumption. Our code will be available at: https://github.com/eezkni/SSIU
AbstractList Major efforts in data-driven image super-resolution (SR) primarily focus on expanding the receptive field of the model to better capture contextual information. However, these methods are typically implemented by stacking deeper networks or leveraging transformer-based attention mechanisms, which consequently increases model complexity. In contrast, model-driven methods based on the unfolding paradigm show promise in improving performance while effectively maintaining model compactness through sophisticated module design. Based on these insights, we propose a Structural Similarity-Inspired Unfolding (SSIU) method for efficient image SR. This method is designed through unfolding an SR optimization function constrained by structural similarity, aiming to combine the strengths of both data-driven and model-driven approaches. Our model operates progressively following the unfolding paradigm. Each iteration consists of multiple Mixed-Scale Gating Modules (MSGM) and an Efficient Sparse Attention Module (ESAM). The former implements comprehensive constraints on features, including a structural similarity constraint, while the latter aims to achieve sparse activation. In addition, we design a Mixture-of-Experts-based Feature Selector (MoE-FS) that fully utilizes multi-level feature information by combining features from different steps. Extensive experiments validate the efficacy and efficiency of our unfolding-inspired network. Our model outperforms current state-of-the-art models, boasting lower parameter counts and reduced memory consumption. Our code will be available at: https://github.com/eezkni/SSIU
Major efforts in data-driven image super-resolution (SR) primarily focus on expanding the receptive field of the model to better capture contextual information. However, these methods are typically implemented by stacking deeper networks or leveraging transformer-based attention mechanisms, which consequently increases model complexity. In contrast, model-driven methods based on the unfolding paradigm show promise in improving performance while effectively maintaining model compactness through sophisticated module design. Based on these insights, we propose a Structural Similarity-Inspired Unfolding (SSIU) method for efficient image SR. This method is designed through unfolding an SR optimization function constrained by structural similarity, aiming to combine the strengths of both data-driven and model-driven approaches. Our model operates progressively following the unfolding paradigm. Each iteration consists of multiple Mixed-Scale Gating Modules (MSGM) and an Efficient Sparse Attention Module (ESAM). The former implements comprehensive constraints on features, including a structural similarity constraint, while the latter aims to achieve sparse activation. In addition, we design a Mixture-of-Experts-based Feature Selector (MoE-FS) that fully utilizes multi-level feature information by combining features from different steps. Extensive experiments validate the efficacy and efficiency of our unfolding-inspired network. Our model outperforms current state-of-the-art models, boasting lower parameter counts and reduced memory consumption. Our code will be available at: https://github.com/eezkni/SSIU.Major efforts in data-driven image super-resolution (SR) primarily focus on expanding the receptive field of the model to better capture contextual information. However, these methods are typically implemented by stacking deeper networks or leveraging transformer-based attention mechanisms, which consequently increases model complexity. In contrast, model-driven methods based on the unfolding paradigm show promise in improving performance while effectively maintaining model compactness through sophisticated module design. Based on these insights, we propose a Structural Similarity-Inspired Unfolding (SSIU) method for efficient image SR. This method is designed through unfolding an SR optimization function constrained by structural similarity, aiming to combine the strengths of both data-driven and model-driven approaches. Our model operates progressively following the unfolding paradigm. Each iteration consists of multiple Mixed-Scale Gating Modules (MSGM) and an Efficient Sparse Attention Module (ESAM). The former implements comprehensive constraints on features, including a structural similarity constraint, while the latter aims to achieve sparse activation. In addition, we design a Mixture-of-Experts-based Feature Selector (MoE-FS) that fully utilizes multi-level feature information by combining features from different steps. Extensive experiments validate the efficacy and efficiency of our unfolding-inspired network. Our model outperforms current state-of-the-art models, boasting lower parameter counts and reduced memory consumption. Our code will be available at: https://github.com/eezkni/SSIU.
Major efforts in data-driven image super-resolution (SR) primarily focus on expanding the receptive field of the model to better capture contextual information. However, these methods are typically implemented by stacking deeper networks or leveraging transformer-based attention mechanisms, which consequently increases model complexity. In contrast, model-driven methods based on the unfolding paradigm show promise in improving performance while effectively maintaining model compactness through sophisticated module design. Based on these insights, we propose a Structural Similarity-Inspired Unfolding (SSIU) method for efficient image SR. This method is designed through unfolding an SR optimization function constrained by structural similarity, aiming to combine the strengths of both data-driven and model-driven approaches. Our model operates progressively following the unfolding paradigm. Each iteration consists of multiple Mixed-Scale Gating Modules (MSGM) and an Efficient Sparse Attention Module (ESAM). The former implements comprehensive constraints on features, including a structural similarity constraint, while the latter aims to achieve sparse activation. In addition, we design a Mixture-of-Experts-based Feature Selector (MoE-FS) that fully utilizes multi-level feature information by combining features from different steps. Extensive experiments validate the efficacy and efficiency of our unfolding-inspired network. Our model outperforms current state-of-the-art models, boasting lower parameter counts and reduced memory consumption. Our code will be available at: https://github.com/eezkni/SSIU.
Author Wang, Shiqi
Zhang, Yang
Wang, Hanli
Kwong, Sam
Ni, Zhangkai
Yang, Wenhan
Author_xml – sequence: 1
  givenname: Zhangkai
  orcidid: 0000-0003-3682-6288
  surname: Ni
  fullname: Ni, Zhangkai
  email: zkni@tongji.edu.cn
  organization: School of Computer Science and Technology and the Key Laboratory of Embedded System and Service Computing (Ministry of Education), Tongji University, Shanghai, China
– sequence: 2
  givenname: Yang
  surname: Zhang
  fullname: Zhang, Yang
  email: zhangy_ce@tongji.edu.cn
  organization: School of Computer Science and Technology and the Key Laboratory of Embedded System and Service Computing (Ministry of Education), Tongji University, Shanghai, China
– sequence: 3
  givenname: Wenhan
  orcidid: 0000-0002-1692-0069
  surname: Yang
  fullname: Yang, Wenhan
  email: yangwh@pcl.ac.cn
  organization: Pengcheng Laboratory, Shenzhen, Guangdong, China
– sequence: 4
  givenname: Hanli
  orcidid: 0000-0002-9999-4871
  surname: Wang
  fullname: Wang, Hanli
  email: hanliwang@tongji.edu.cn
  organization: School of Computer Science and Technology and the Key Laboratory of Embedded System and Service Computing (Ministry of Education), Tongji University, Shanghai, China
– sequence: 5
  givenname: Shiqi
  orcidid: 0000-0002-3583-959X
  surname: Wang
  fullname: Wang, Shiqi
  email: shiqwang@cityu.edu.hk
  organization: Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong
– sequence: 6
  givenname: Sam
  orcidid: 0000-0001-7484-7261
  surname: Kwong
  fullname: Kwong, Sam
  email: samkwong@ln.edu.hk
  organization: School of Data Science, Lingnan University, Tuen Mun, Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40531647$$D View this record in MEDLINE/PubMed
BookMark eNpFkE1Lw0AQhhep2Fq9exDJ0Uvqzn4k2aMUPwoFxdZz2Gxm60o-6m6C9N-b0qqXmYH3eefwnJNR0zZIyBXQGQBVd-vF64xRJmdcplkq-QmZgBIQUyrYaLipTOMUhBqT8xA-KQUhITkjY0Elh0SkE_Ky6nxvut7rKlq52lXau24XL5qwdR7L6L2xbVW6ZhPZ1kdLt_novnE_o0WtNxit-i36-A1DW_Wda5sLcmp1FfDyuKdk_fiwnj_Hy5enxfx-GRuWyi5WFGjGEoGlLiyAEMparorMmIwXqSpNohXLMFUWMaGlMoBFaWiWWWmUtnxKbg9vt7796jF0ee2CwarSDbZ9yDljjMuEcRjQmyPaFzWW-da7Wvtd_utgAOgBML4NwaP9Q4Dme835oDnfa86PmofK9aHiEPEfB8oVDPEPyEx5ZA
CODEN IIPRE4
Cites_doi 10.1109/iccv.2001.937655
10.1109/TPAMI.2013.102
10.1007/978-3-030-01234-2_18
10.1109/ICCVW54120.2021.00210
10.1109/JBHI.2024.3454068
10.1109/TIP.2024.3368960
10.1109/TPAMI.2021.3088914
10.1109/LSP.2023.3264558
10.1109/CVPR52729.2023.02143
10.1145/3474085.3475291
10.1007/978-3-030-01249-6_16
10.1109/CVPR.2016.182
10.1109/TIP.2023.3279977
10.1109/WACV56688.2023.00493
10.1109/CVPR42600.2020.00583
10.1109/CVPR.2019.01132
10.1109/TIP.2023.3348293
10.1007/978-3-642-27413-8_47
10.24963/ijcai.2022/128
10.1109/ICCV51070.2023.01150
10.1109/ICCV51070.2023.01213
10.1109/CVPR.2016.207
10.1007/s11263-019-01285-y
10.1007/978-3-030-58610-2_12
10.1109/CVPR.2015.7299156
10.1109/TPAMI.2015.2439281
10.1109/TBC.2024.3374122
10.1109/CVPR46437.2021.00908
10.1109/CVPR.2017.298
10.1109/TIP.2022.3154614
10.1109/CVPR52733.2024.02437
10.1007/s11263-022-01699-1
10.1109/TCSVT.2024.3467259
10.1109/ICCV51070.2023.01174
10.1007/978-3-031-73661-2_27
10.1109/tcsvt.2025.3549351
10.5244/C.26.135
10.1109/CVPRW.2017.151
10.1016/j.patcog.2023.110095
10.1109/CVPRW.2017.150
10.1007/s11263-023-01813-x
10.1007/s11263-019-01253-6
10.1109/CVPR46437.2021.00488
10.1109/CVPR52733.2024.00276
10.1109/TIP.2012.2235847
10.1109/CVPRW56347.2022.00061
10.1109/CVPR46437.2021.00776
10.1109/TIP.2021.3050856
10.1109/CVPR52729.2023.02142
10.1109/TIP.2011.2108306
10.1002/cpa.20042
10.1145/3343031.3351084
10.1007/s11042-016-4020-z
10.1109/CVPR.2019.00177
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TIP.2025.3578753
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 3872
ExternalDocumentID 40531647
10_1109_TIP_2025_3578753
11039153
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62201387; 62371343
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 10.13039/501100012226
– fundername: Interdisciplinary Frontier Research Project of Pengcheng Laboratory (PCL)
  grantid: 2025QYB013
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
NPM
RIG
7X8
ID FETCH-LOGICAL-c275t-90108264edabf11449ff39b8cc83b79dc6a928e79fee60d9c1ebdc088f5c9af3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001516237300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Thu Oct 02 22:33:44 EDT 2025
Thu Jun 26 01:52:28 EDT 2025
Sat Nov 29 07:51:43 EST 2025
Wed Aug 27 01:36:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c275t-90108264edabf11449ff39b8cc83b79dc6a928e79fee60d9c1ebdc088f5c9af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1692-0069
0000-0002-3583-959X
0000-0001-7484-7261
0000-0002-9999-4871
0000-0003-3682-6288
PMID 40531647
PQID 3222356231
PQPubID 23479
PageCount 12
ParticipantIDs pubmed_primary_40531647
crossref_primary_10_1109_TIP_2025_3578753
proquest_miscellaneous_3222356231
ieee_primary_11039153
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref56
ref15
ref59
ref14
Li (ref35); 33
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
Sun (ref38)
ref45
ref48
ref47
Loshchilov (ref58)
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
Kingma (ref57)
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Dosovitskiy (ref24)
References_xml – ident: ref54
  doi: 10.1109/iccv.2001.937655
– ident: ref46
  doi: 10.1109/TPAMI.2013.102
– ident: ref4
  doi: 10.1007/978-3-030-01234-2_18
– ident: ref11
  doi: 10.1109/ICCVW54120.2021.00210
– ident: ref9
  doi: 10.1109/JBHI.2024.3454068
– start-page: 17314
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref38
  article-title: ShuffleMixer: An efficient ConvNet for image super-resolution
– ident: ref8
  doi: 10.1109/TIP.2024.3368960
– ident: ref17
  doi: 10.1109/TPAMI.2021.3088914
– ident: ref15
  doi: 10.1109/LSP.2023.3264558
– ident: ref43
  doi: 10.1109/CVPR52729.2023.02143
– ident: ref36
  doi: 10.1145/3474085.3475291
– ident: ref33
  doi: 10.1007/978-3-030-01249-6_16
– ident: ref2
  doi: 10.1109/CVPR.2016.182
– ident: ref12
  doi: 10.1109/TIP.2023.3279977
– ident: ref26
  doi: 10.1109/WACV56688.2023.00493
– ident: ref25
  doi: 10.1109/CVPR42600.2020.00583
– ident: ref5
  doi: 10.1109/CVPR.2019.01132
– ident: ref50
  doi: 10.1109/TIP.2023.3348293
– ident: ref53
  doi: 10.1007/978-3-642-27413-8_47
– ident: ref39
  doi: 10.24963/ijcai.2022/128
– ident: ref41
  doi: 10.1109/ICCV51070.2023.01150
– ident: ref42
  doi: 10.1109/ICCV51070.2023.01213
– ident: ref13
  doi: 10.1109/CVPR.2016.207
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref58
  article-title: SGDR: Stochastic gradient descent with warm restarts
– ident: ref48
  doi: 10.1007/s11263-019-01285-y
– ident: ref6
  doi: 10.1007/978-3-030-58610-2_12
– ident: ref55
  doi: 10.1109/CVPR.2015.7299156
– ident: ref1
  doi: 10.1109/TPAMI.2015.2439281
– ident: ref30
  doi: 10.1109/TBC.2024.3374122
– ident: ref59
  doi: 10.1109/CVPR46437.2021.00908
– volume: 33
  start-page: 20343
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref35
  article-title: LAPAR: Linearly-assembled pixel-adaptive regression network for single image super-aesolution and beyond
– ident: ref22
  doi: 10.1109/CVPR.2017.298
– ident: ref3
  doi: 10.1109/TIP.2022.3154614
– ident: ref31
  doi: 10.1109/CVPR52733.2024.02437
– ident: ref19
  doi: 10.1007/s11263-022-01699-1
– ident: ref28
  doi: 10.1109/TCSVT.2024.3467259
– ident: ref40
  doi: 10.1109/ICCV51070.2023.01174
– ident: ref44
  doi: 10.1007/978-3-031-73661-2_27
– ident: ref29
  doi: 10.1109/tcsvt.2025.3549351
– ident: ref52
  doi: 10.5244/C.26.135
– ident: ref32
  doi: 10.1109/CVPRW.2017.151
– ident: ref23
  doi: 10.1016/j.patcog.2023.110095
– ident: ref51
  doi: 10.1109/CVPRW.2017.150
– ident: ref49
  doi: 10.1007/s11263-023-01813-x
– ident: ref14
  doi: 10.1007/s11263-019-01253-6
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref24
  article-title: An image is worth 16×16 words: Transformers for image recognition at scale
– ident: ref37
  doi: 10.1109/CVPR46437.2021.00488
– ident: ref27
  doi: 10.1109/CVPR52733.2024.00276
– ident: ref45
  doi: 10.1109/TIP.2012.2235847
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref57
  article-title: Adam: A method for stochastic optimization
– ident: ref10
  doi: 10.1109/CVPRW56347.2022.00061
– ident: ref16
  doi: 10.1109/CVPR46437.2021.00776
– ident: ref7
  doi: 10.1109/TIP.2021.3050856
– ident: ref20
  doi: 10.1109/CVPR52729.2023.02142
– ident: ref21
  doi: 10.1109/TIP.2011.2108306
– ident: ref47
  doi: 10.1002/cpa.20042
– ident: ref34
  doi: 10.1145/3343031.3351084
– ident: ref56
  doi: 10.1007/s11042-016-4020-z
– ident: ref18
  doi: 10.1109/CVPR.2019.00177
SSID ssj0014516
Score 2.473553
Snippet Major efforts in data-driven image super-resolution (SR) primarily focus on expanding the receptive field of the model to better capture contextual...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 3861
SubjectTerms Complexity theory
Computational modeling
Electronic mail
Encoding
Estimation
Feature extraction
Image reconstruction
Image super-resolution
light-weight
Optimization
paradigm unfolding
sparse attention
Superresolution
Transformers
Title Structural Similarity-Inspired Unfolding for Lightweight Image Super-Resolution
URI https://ieeexplore.ieee.org/document/11039153
https://www.ncbi.nlm.nih.gov/pubmed/40531647
https://www.proquest.com/docview/3222356231
Volume 34
WOSCitedRecordID wos001516237300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4IMQYPoviqD1ITLx4KfW_3aIxEEoIkYMKtYR9NOFAID_37zmwLcuHgrYe-Mt_s7jf77cwAPMcTznyRKZz9ROCElMTFZeA5EfOTjE8yJaWprt9j_X4yHvNBmaxucmG01ubwmW7RpdHy1VxuaKus7XmmnnlQgQpjcZGstZMMqOOskTYj5jDk_VtN0uXtUXeAkaAftai0C_LzGpyE5HwxNVXZW45Mf5XDVNMsOZ36P3_2HM5Kbmm_Fs5wAUc6b0C95Jl2OYpXDTjdK0J4CZ9DU0KWym_Yw-lsiqEuMnOnm5MGj899oQsahcpGfmv3KJj_MfupdneGk5E93Cz00iEZoHDiKxh13kdvH07ZZsGRPovW5oAGBhmhVhORYXgU8iwLuEikTALBuJKIp59oxjOtY1dx6WmhJM5OWSQRzeAaqvk817dge0mMiPtMaBZg2OeKULhKMoWhr0YmJC142Ro7XRTFNFIThLg8RYxSwigtMbLgimz6d19pTguetvCkOBJI3pjker5ZpaQZBUTnPAtuCtx2T2_hvjvw1nuo0ceLvZUHqKLh9SMcy-_1dLVsoruNk6Zxt1-in9AW
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oGsWD-EDFZ028eCj0yXaPxkggIpKACbeGfTThQCE89O87sy3IhYO3Htpms9_s7vfttzML8FQfcuaJROHsJ3w7oCQuLn3XDpkXJXyYKClNdf0263SiwYB382R1kwujtTaHz3SVHo2XryZySVtlNdc19cz9XdgLg8BzsnSttWlAd84aczNkNkPmv3IlHV7rt7qoBb2wSsVdkKEX4SCg8KvTtSobC5K5YWU72TSLTqP0z-aewHHOLq2XLBxOYUenZ1DKmaaVj-P5GRxtlCE8h8-eKSJLBTis3mg8QrGL3NxupeTC43dfGITGo7KQ4VptkvM_ZkfVao1xOrJ6y6me2WQEZGFchn7jrf_atPOLFmzpsXBhjmigzAi0GooEBVLAk8TnIpIy8gXjSiKiXqQZT7SuO4pLVwslcX5KQol4-hdQSCepvgLLjeqIuceEZj4KP0cEwlGSKRS_GrmQrMDzqrPjaVZOIzYyxOExYhQTRnGOUQXK1Kd_7-XdWYHHFTwxjgUyOIapniznMblGPhE6twKXGW7rr1dwX2_56wMcNvsf7bjd6rzfQJEaku203EIBQdB3sC-_F6P57N4E3S-3X9J1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+Similarity-Inspired+Unfolding+for+Lightweight+Image+Super-Resolution&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Ni%2C+Zhangkai&rft.au=Zhang%2C+Yang&rft.au=Yang%2C+Wenhan&rft.au=Wang%2C+Hanli&rft.date=2025-01-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=34&rft.spage=3861&rft.epage=3872&rft_id=info:doi/10.1109%2FTIP.2025.3578753&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2025_3578753
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon