A Cesàro-like Operator from Besov Spaces to Some Spaces of Analytic Functions
In this paper, for p>1 and s>1, we characterize completely the boundedness and compactness of a Cesàro-like operator from the Besov space Bp into a Banach space X between the mean Lipschitz space Λ1/ss and the Bloch space. In particular, for p=s=2, we complete a previous result from the litera...
Uloženo v:
| Vydáno v: | Computational methods and function theory Ročník 25; číslo 3; s. 553 - 568 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Heidelberg
Springer Nature B.V
01.09.2025
|
| Témata: | |
| ISSN: | 1617-9447, 2195-3724 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, for p>1 and s>1, we characterize completely the boundedness and compactness of a Cesàro-like operator from the Besov space Bp into a Banach space X between the mean Lipschitz space Λ1/ss and the Bloch space. In particular, for p=s=2, we complete a previous result from the literature. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1617-9447 2195-3724 |
| DOI: | 10.1007/s40315-024-00542-7 |