An Upper Bound on the Complexity of Multiplication of Polynomials Modulo a Power of an Irreducible Polynomial

Let μ q 2 (n,k) denote the minimum number of multiplications required to compute the coefficients of the product of two degree n k - 1 polynomials modulo the kth power of an irreducible polynomial of degree n over the q 2 element field \BBF q 2 . It is shown that for all odd q and all n = 1,2,..., l...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on information theory Ročník 59; číslo 10; s. 6845 - 6850
Hlavní autori: Kaminski, Michael, Chaoping Xing
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY IEEE 01.10.2013
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9448, 1557-9654
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Let μ q 2 (n,k) denote the minimum number of multiplications required to compute the coefficients of the product of two degree n k - 1 polynomials modulo the kth power of an irreducible polynomial of degree n over the q 2 element field \BBF q 2 . It is shown that for all odd q and all n = 1,2,..., liminfk → ∞[( μ q 2 (n,k))/ k n] ≤ 2 (1 + [ 1/( q - 2)] ). For the proof of this upper bound, we show that for an odd prime power q, all algebraic function fields in the Garcia-Stichtenoth tower over \BBF q 2 have places of all degrees and apply a Chudnovsky like algorithm for multiplication of polynomials modulo a power of an irreducible polynomial.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2013.2272072