An Upper Bound on the Complexity of Multiplication of Polynomials Modulo a Power of an Irreducible Polynomial
Let μ q 2 (n,k) denote the minimum number of multiplications required to compute the coefficients of the product of two degree n k - 1 polynomials modulo the kth power of an irreducible polynomial of degree n over the q 2 element field \BBF q 2 . It is shown that for all odd q and all n = 1,2,..., l...
Uloženo v:
| Vydáno v: | IEEE transactions on information theory Ročník 59; číslo 10; s. 6845 - 6850 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY
IEEE
01.10.2013
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9448, 1557-9654 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Let μ q 2 (n,k) denote the minimum number of multiplications required to compute the coefficients of the product of two degree n k - 1 polynomials modulo the kth power of an irreducible polynomial of degree n over the q 2 element field \BBF q 2 . It is shown that for all odd q and all n = 1,2,..., liminfk → ∞[( μ q 2 (n,k))/ k n] ≤ 2 (1 + [ 1/( q - 2)] ). For the proof of this upper bound, we show that for an odd prime power q, all algebraic function fields in the Garcia-Stichtenoth tower over \BBF q 2 have places of all degrees and apply a Chudnovsky like algorithm for multiplication of polynomials modulo a power of an irreducible polynomial. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 0018-9448 1557-9654 |
| DOI: | 10.1109/TIT.2013.2272072 |